Author: Etxebarria, V.
Paper Title Page
MOPC043 Electromagnetic Simulations of the Input Power Couplers for the ESS-Bilbao RFQ 172
 
  • O. Gonzalez, I. Bustinduy, N. Garmendia, J.L. Munoz, A. Velez
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  An input power system is currently being designed at ESS-Bilbao in order to inject the RF power provided by a klystron into the RFQ as part of the linac. In this work, some input power couplers based on a coaxial topology are carefully studied from an electromagnetic point of view. As we will show, the electrical properties of the ceramic window used to ensure the vacuum of the RFQ crucially deteriorates the matching of the devices. To overcome this drawback, a full-wave electromagnetic simulator is used to optimize the coupler dimensions in order to minimize both the return and insertion losses.  
 
MOPC044 Design of the Radiofrequency Quadrupole Coldmodel for the ESS-BILBAO Linear Accelerator 175
 
  • A. Velez, I. Bustinduy, N. Garmendia, O. Gonzalez, J.L. Munoz, D. de Cos
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  This work will present the design of the ESS-Bilbao LINAC RFQ cold model. The process goes through the electromagnetic design of the cavity by properly setting the resonant quadrupole and dipole modes, as well as the resonance frequency. The prototype includes the vane modulation designed to accelerate a 75 mA proton beam from 75 keV to 3 MeV, with an operating frequency of 352.2 MHz. To this end, electromagnetic and electrostatic simulations have been performed by means of the commercial software COMSOL. Furthemore, results for the three components of the electrical field distribution will be presented and compared to those calculated by evaluating the 8-term multipole expansion.  
 
TUPC125 Test of the Front-end Electronics and Acquisition System for the LIPAC BPMs 1311
 
  • D. Belver, I. Arredondo, P. Echevarria, J. Feuchtwanger, H. Hassanzadegan, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • J.M. Carmona, A. Guirao, A. Ibarra, L.M. Martinez Fresno, I. Podadera
    CIEMAT, Madrid, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • N. Garmendia, L. Muguira
    ESS Bilbao, Bilbao, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
Non-interceptive Beam Position Monitors pickups (BPMs) will be installed along the beamlines of the IFMIF/EVEDA linear prototype accelerator (LIPAC) to measure the transverse beam position in the vacuum chamber in order to correct the dipolar and tilt errors. Depending on the location, the BPMs response must be optimized for a beam of 175 MHz bunch repetition, an energy range from 5 up to 9 MeV, a current between 0.1 and 125 mA and continuous and pulse operation. The requirements from beam dynamics for the BPMs are quite stringent, aiming for the position an accuracy below 100 μm and a resolution below 10 μm, and for the phase an accuracy below 2° and a resolution below 0.3°. To meet these specifications, the BPM electronics system developed by ESS-Bilbao has been adapted for its use with the BPMs of LIPAC. This electronics system is divided in an Analog Front-End unit, where the signals are conditioned and converted to baseband, and a Digital Unit to sample them and calculate the position and phase. The electronics system has been tested at CIEMAT with a wire test bench and a prototype BPM. In this contribution, the tests performed will be fully described and the results discussed.
 
 
WEPC155 Fast Acquisition Multipurpose Controller with EPICS Integration and Data Logging 2346
 
  • I. Arredondo, D. Belver, P. Echevarria, H. Hassanzadegan, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • N. Garmendia, L. Muguira
    ESS Bilbao, Bilbao, Spain
 
  Funding: Funding Agency The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
This work introduces a fast acquisition multipurpose controller (MC), based on a XML configuration with EPICS integration and Data Logging. The main hardware is an FPGA based board, connected to a Host PC. This Host computer acts as the local controller and implements an IOC, integrating the device into an EPICS network. Java has been used as the main programming language in order to make the device fit the desired application. The whole process includes the use of different technologies: JNA to handle FPGA API, JavaIOC to integrate EPICS and XML w3c DOM classes to configure each particular application. Furthermore, a MySQL database is used for data storage, together with the deployment of an EPICS ArchiveEngine instance, offering the possibility to record data from both, the ArchiveEngine and a specifically designed Java library. The developed Java specific tools include different methods: FPGA management, creation and use of EPICS server, mathematical data processing, Archive Engine's MySQL database connection and creation/initialization of the application structure by means of an XML file. This MC has been used to implement a BPM and an LLRF applications for ESS-Bilbao.
 
 
THPS023 Automatic Tuner Unit Design, Simulation and Measurement for Automatic Operation of the RF System in the ESS-Bilbao H+ Ion Source 3469
 
  • L. Muguira, I. Arredondo, D. Belver, M. Eguiraun, F.J. Fernandez Huerta, J. Feuchtwanger, N. Garmendia, O. Gonzalez, J. Verdu
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
The Ion Source responsible intended to generate a high current and low emittance proton beam for the ESS-Bilbao is currently under construction. The plasma in the source is generated by coupling the 2.72 GHz power input from a Klystron through a magnetic field with an intensity close to the electron cyclotron resonance (ECR) field at the input RF frequency. The electrical behavior of the plasma strongly depends on different plasma characteristics which, at the same time, also depend on the microwave absorption. Thus, in order to maximize the RF power transferred to the plasma, a waveguide automatic tuner unit is employed to match the generator output to the electric impedance of the plasma. This device is generally adjusted manually. In this paper, the design, the 1D and 3D simulation, and measurements are presented which allows us to propose an automatic and real time control of the device. In a first approximation, with the aim of testing the proper operation of the automatic tuner unit, an in-house variable phase shifter and attenuator has been designed and manufactured to simulate the electric behavior of the plasma.