Author: Du, G.
Paper Title Page
WEPC071 The Motion of an Electron in the Periodic Cusped Magnetic Fields 2184
 
  • G. Du, B.L. Qian, H. Wang
    National University of Defense Technology, Changsha, Kaifu District, People's Republic of China
 
  Funding: National High Technology Research and Development Program of P. R. China
The motion and its stability of an electron in the periodic cusped magnetic fields have been analyzed theoretically and calculated numerically, as the stability could not be well predicted by the Mathieu’s equation to guide the design of the magnetic focusing system for the propagation of the sheet electron beams in the waveguides. The precise solution to the motion equations of the electron has been obtained by iteration. To validate the analytical solution and to evaluate the stability of the motion, numerical calculations have been carried out. And the results show that the analytical solution is reliable, and there is only one stable region in the (p0, B0) space, where the parameter p0 is the period of the magnetic fields, and B0 is the magnitude of the magnetic fields. Besides, the stability of the electron motion would become weaker while the initial distance between the electron and the axis becomes larger. These results are interesting to the area of the sheet-electron-beam microwave sources focused by the periodical cusped magnetic fields.