Author: Droba, M.
Paper Title Page
MOPS029 Experiments with a Fast Chopper System for Intense Ion Beams 664
 
  • H. Dinter, M. Droba, M. Lotz, O. Meusel, I. Müller, D. Noll, U. Ratzinger, K. Schulte, C. Wagner, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  Chopper systems are used to pulse charged particle beams. In most cases, electric deflection systems are used to generate beam pulses of defined lengths and appropriate repetition rates. At high beam intensities, the field distribution of the chopper system needs to be adapted precisely to the beam dynamics in order to avoid aberrations. An additional challenge is a robust design which guarantees reliable operation. For the Frankfurt Neutron Source FRANZ, an E×B chopper system is being developed which combines static magnetic deflection with a pulsed electric field in a Wien filter configuration. It will generate proton pulses with a flat top of 50 ns at a repetition rate of 250 kHz for 120 keV, 200 mA beams. For the electric deflection, pre-experiments with static and pulsed fields were performed using a helium ion beam. In pulsed mode operation, ion beams of different energies were deflected with voltages of up to ±6 kV and the resulting response was measured using a beam current transformer. A comparison between experiments and theoretical calculations as well as numerical simulations are presented.  
 
MOPS030 Beam Dynamics of the FRANZ Bunch Compressor using Realistic Fields with a Focus on the Rebuncher Cavities 667
 
  • D. Noll, L.P. Chau, M. Droba, O. Meusel, H. Podlech, U. Ratzinger, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by HIC for FAIR.
The ARMADILLO bunch compressor currently being designed at IAP is capable of reaching a longitudinal pulse compression ratio of 45 for proton beams of 150 mA at 2 MeV. It will provide one nanosecond proton pulses with a peak current of 7.7 A. The system guides nine linacμbunches deflected by a 5 MHz rf kicker and uses four dipole magnets - two homogeneous and two with field gradients - to merge them on the target. For longitudinal focusing and an energy variation of ±200 keV two multitrack rf cavities are included. ARMADILLO will be installed at the end of the Frankfurt Neutron Source FRANZ making use of the unique 250 kHz time structure. This contribution will provide an overview of the layout of the system as well as recent advances in component design and beam dynamics of the compressor.
 
 
WEPS004 Confinement, Accumulation and Diagnostic of Low Energy Ion Beams in Toroidal Fields 2487
 
  • M. Droba, A. Ates, O. Meusel, H. Niebuhr, U. Ratzinger, J.F. Wagner
    IAP, Frankfurt am Main, Germany
 
  An optimized design of a stellarator-type storage ring for low energy ion beams was numerically investigated. The magnetic field variation along the circumference and therefore magnetic heating is suppressed by using simple circular correction coils. Particle-in-Cell (PIC) simulations in a magnetic flux coordinate system show the ability of high current ion beam accumulation in such a configuration with unique features for clockwise and anticlockwise moving beams. Additionally scaled down experiments with two 30 degree room temperature toroidal segments were performed to demonstrate toroidal transport and to develop optical beam diagnostics. Properties of multi-component beams, redistribution of transversal momenta in the non-adiabatic part of the experimental configuration and investigation of strongly confined beam induced electron clouds will be addressed.  
 
WEPS033 Matching a Laser Driven Proton Injector to a CH - Drift Tube Linacs 2556
 
  • A. Almomani, M. Droba, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • I. Hofmann
    HIJ, Jena, Germany
 
  Experimental results and theoretical predictions in laser acceleration of protons achieved energies of ten to several tens of MeV. The LIGHT project (Laser Ion Generation, Handling and Transport) is proposed to use the PHELIX laser accelerated protons and to provide transport, focusing and injection into a conventional accelerator. This study demonstrates transport and focusing of laser-accelerated 10 MeV protons by a pulsed 18 T magnetic solenoid. The effect of co-moving electrons on the beam dynamics is investigated. The unique features of the proton distribution like small emittances and high yield of the order of 1013 protons per shot open new research area. The possibility of creating laser based injectors for ion accelerators is addressed. With respect to transit energies, direct matching into DTL's seems adequate. The bunch injection into a proposed CH structure is under investigation at IAP Frankfurt. Options and simulation tools are presented.  
 
WEPS040 The Driver Linac of the Neutron Source FRANZ 2577
 
  • U. Ratzinger, B. Basten, L.P. Chau, H. Dinter, M. Droba, M. Heilmann, M. Lotz, O. Meusel, I. Müller, D. Mäder, Y.C. Nie, D. Noll, H. Podlech, A. Schempp, W. Schweizer, K. Volk, C. Wiesner, C. Zhang
    IAP, Frankfurt am Main, Germany
 
  FRANZ is under construction at the Goethe University Frankfurt. A 2MeV ± 100 keV proton beam will produce 1 keV to 200 keV neutrons on a Li7 target. Experiments are planned in the field of nuclear astrophysics as well as in applied physics. A dc operated proton source with a maximum beam current of 200 mA was successfully beam tested end of 2010. FRANZ will have two experimental areas: One for activation experiments with cw proton beams of a few mA generating a usable neutron flux of some 10 billion per square cm per second, the other one for 250 kHz, 1 ns short neutron bunches generated by 1 ns proton pulses of a few Ampere beam current. A special 2 MeV, 175 MHz high current cavity is realized at present as a RFQ-DTL combination. Novel techniques have been invented to reach the needed pulsed target beam current by a bunch compressor system.
Work supported by HICforFAIR and GSI.
 
 
THPS034 Studies on Electron Cloud Dynamics for an Optimized Space Charge Lens Design 3493
 
  • K. Schulte, M. Droba, B. Glaeser, S. Klaproth, O. Meusel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by HIC for FAIR.
Space charge lenses using a stable electron cloud for focusing low energy heavy ion beams are an alternative concept to conventional ion optics. Due to external fields electrons are confined inside the lens’ volume. In case of a homogeneously distributed electron cloud the linear electric space charge field enables beam focusing free of aberration. Since the mapping quality of the lens is related to the confinement, non-destructive diagnostics has been developed to determine the plasma parameters and to characterize the collective behavior of the confined nonneutral plasma. Moreover, a scaled up space charge lens was constructed for a detailed investigation of the nonneutral plasma properties as well as beam interactions with a stable confined electron cloud. Experimental results will be presented in comparison with numerical simulations.