Author: Dolph, J.D.
Paper Title Page
MOPS091 Study of Electron Cloud for MEIC 817
 
  • S. Ahmed, J.D. Dolph, G.A. Krafft, T. Satogata, B.C. Yunn
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Medium Energy Electron Ion Collider (MEIC) at Jefferson Lab has been envisioned as a future high energy particle accelerator beyond the 12 GeV upgrade of the existing Continuous Electron Beam Accelerator Facility (CEBAF). Synchrotron radiation from the closely spaced proton bunches in MEIC can generate photoelectrons inside the vacuum chamber and cause secondary emission due to multipacting in the presence of beam's electric field. This phenomenon can lead to fast build up of electron density, known as electron cloud effect – resulting into beam instability coupled to multi-bunches in addition to a single bunch. For MEIC, the estimated threshold value of the electron-cloud density is approximately 5 x 1012 m-3. In this paper, we would like to report the self-consistent simulation studies of electron cloud formation for MEIC. The code has been benchmarked against the published data of electron cloud effects observed in LHC. Our first simulations predict increase of electron clouds with the increase of repetition rate. The detailed simulations are under progress and will be reported.