Author: Dolgashev, V.A.
Paper Title Page
MOPC071 Status of High Power Tests of Normal Conducting Short Standing Wave Structures* 241
 
  • V.A. Dolgashev, Z. Li, S.G. Tantawi, A.D. Yeremian
    SLAC, Menlo Park, California, USA
  • Y. Higashi
    KEK, Ibaraki, Japan
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work Supported by Doe Contract No. DE-AC02-76SF00515
We report results of continuing high power tests of short standing wave structures. These tests are part of an experimental and theoretical study of basic physics of rf breakdown in 11.4 GHz, normal conducting structures. The goal of this study is to determine the accelerating gradient capability of normal conducting rf powered particle accelerators. We have tested structures of different geometries, cell joining techniques, and materials. We found that the breakdown rate dependence on peak magnetic fields is stronger than on peak surface electric fields for cylindrically symmetric structures powered via a TM01 mode launcher. We report test results for structures powered by side-coupled rectangular waveguides. We found that increased rf magnetic field due to the side-coupling increases the breakdown rate as compared to the same accelerating gradient in cylindrically symmetric structures.
 
 
MOPC072 Design of an RF Feed System for Standing-wave Accelerator Structures 244
 
  • J. Neilson, V.A. Dolgashev, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Travelling wave (TW) accelerator structures are known to suffer from several deficiencies. A breakdown in one of the cells propagates towards the source. This results in damage to upstream cells in addition to the cell where the breakdown was initiated. The deficiencies of TW accelerator structures can be overcome by using standing wave (SW) cells that are fed in parallel. An RF breakdown is contained to the cell where it originates. This eliminates upstream cell damage and the resulting changes in phase shift between cells. In addition the feed structure can provide a high conductance port for vacuum pumping. We have completed the design of a parallel fed SW structure with a directional coupler for each cell and serpentine waveguide connection between couplers. This design approach improves isolation between the cells resulting in the maximum increase in the operational robustness of the accelerator structure. The design uses four feed arms spaced uniformly around the cell circumference to suppress dipole modes and improve damping of low order wakefields. Construction of a test structure in now underway and is scheduled for testing in October of this year.  
 
MOPC073 A Dual-mode Accelerating Cavity to Test RF Breakdown Dependence on RF Magnetic Fields 247
 
  • A.D. Yeremian, V.A. Dolgashev, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: * Work Supported by Doe Contract No. DE-AC02-76SF00515
RF Breakdown experiments on short accelerating structures at SLAC have shown that increased rf magnetic fields increase the probability of rf breakdowns. Moreover, the breakdown rate is highly correlated with the peak pulse-heating in soft-copper single-cell standing-wave structures of disk-loaded waveguide type. In these geometries the rf electric and magnetic fields are highly correlated. To separate effects of rf magnetic and electric fields on the rf breakdown rate, we have designed an X-band cavity with a geometry as close to that of a standing-wave accelerator cell as practically possible. This cavity supports two modes: an accelerating TM mode and a TE mode with no-surface-electric field but with a strong magnetic field. The cavity will be constructed and tested at the Accelerator Structure Test Area (ASTA) at SLAC.
 
 
TUPC026 Status of the Crab Cavity Design for the CLIC 1054
 
  • P.K. Ambattu, G. Burt, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • R.M. Jones
    UMAN, Manchester, United Kingdom
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  RF design of a crab cavity (2π/3, 11.9942 GHz) for the Compact Linear Collide (CLIC) is presented. As part of the UK-CLIC collaboration, CERN is building two copper prototypes, designed by Lancaster University / Cockcroft Institute. The first prototype to be made will be a 12 cell undamped cavity and the second will be waveguide damped cavity. The RF test at CERN will help characterisation of the dipole mode with X-band RF pulses of 15 MW peak power and pulse length of ~242 ns. Since the cavity frequency and phase advance per cell are identical to those of the CLIC main linac, the first prototype could exploit CERN’s X-band cavity characterisation facilities. A fully damped cavity will be required for the actual machine in order to meet the luminosity specs. The damped prototype will use an identical coupler type as the undamped one, but the cells will have damping waveguides with / without dielectric material.