Author: Doceul, L.
Paper Title Page
TUPS004 Enhanced High-voltage Holding under Vacuum by Field Induced Adsorption of Gas on Metal Surfaces 1524
  • A. Simonin, L. Christin, L. Doceul, F. Faisse, F. Villecroze, H. de Esch
    CEA, St Paul Lez Durance, France
  *The energy of future neutral beam injector heating systems of fusion power plants ranges from 1 to 2 MeV. The beam line and the reactor chamber are under vacuum, while all the electrical components (power supplies) are connected to the injector via a long pressured (SF6) high-voltage (1-2 MV) transmission line. The bushing is a key component that ensures the barrier between the transmission line and the injector under vacuum; the design of this component is very challenging as it faces several stringent constraints due to the nuclear environment, in which high-voltage holding, mechanical stresses, and radiations are combined. Moreover, it is a high-voltage feed-through that allows supply of the accelerator electrodes with electrical power, active water cooling, and gas. In this paper, a new high-voltage bushing concept based on experimental findings previously obtained in the laboratory is presented. The main advantages of the concept is a reduction of the electron field emission under vacuum, which is an issue for conventional bushings, a reduction in size, and mechanical simplification of the device resulting in cost reduction and greater reliability."