Author: Delerue, N.
Paper Title Page
TUPO002 High Flux Polarized Gamma Rays Production: First Measurements with a Four-mirror Cavity at the ATF 1446
 
  • N. Delerue, J. Bonis, I. Chaikovska, R. Chiche, R. Cizeron, M. Cohen, P. Cornebise, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, Y. Peinaud, L. Pinard, V. Soskov, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • T. Akagi, S. Miyoshi
    Hiroshima University, Graduate School of Advanced Sciences of Matter, Higashi-Hiroshima, Japan
  • S. Araki, Y. Funahashi, Y. Honda, T. Omori, H. Shimizu, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • E. Cormier
    CELIA, Talence, France
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  Funding: ANR, IN2P3
The next generation of e+/e- colliders will require the production of a very intense flux of gamma rays to allow polarized positrons to be produced in sufficient quantities. To demonstrate that this can be achieved a four-mirror cavity has recently been installed at the Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized gamma rays by inverse Compton scattering. A four-mirror non-planar geometry is used to ensure the polarization of the gamma rays produced. The main mechanical features of the cavity are presented. A fibre amplifier is used to inject about 10W in the high finesse cavity with a gain of 1000. A digital feedback system is used to keep the cavity at the length required for the optimal power enhancement. First preliminary measurements show that on some beam crossings the interactions produce more than 25 photons with an average energy of about 24 MeV. Several upgrades currently in progress are described.
 
 
WEOBB03 Electron Bunch Profile Diagnostics in the Few fs Regime using Coherent Smith-Purcell Radiation 1970
 
  • N. Delerue
    LAL, Orsay, France
  • R. Bartolini, G. Doucas, K. Pattle, C. Perry, A. Reichold, R. Tovey
    JAI, Oxford, United Kingdom
 
  Funding: John Fell Fund, University of Oxford
The rapid developments in the field of laser-driven particle acceleration hold the prospect of intense, highly relativistic electron bunches that are only a few fs long. The determination of the temporal profile of such a bunch presents new challenges. The use of a radiative process such as Smith-Purcell radiation (SPR), whereby the beam is made to radiate a small amount of e/m radiation and the temporal profile is then reconstructed from the measured spectral distribution of the radiation, is particularly promising in this respect. We summarize the advantages of SPR and present the design parameters of a forthcoming experiment at the FACET facility at SLAC with bunch lengths of the order of 60fs rms. We also discuss a new approach to the problem of the recovery of the ‘missing phase’, which is essential for the accurate reconstruction of the bunch profile.
 
slides icon Slides WEOBB03 [4.627 MB]  
 
WEPC051 Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring 2127
 
  • I. Chaikovska, C. Bruni, N. Delerue, A. Variola, Z.F. Zomer
    LAL, Orsay, France
  • K. Kubo, T. Naito, T. Omori, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of e+e colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-Perot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and will be used to produce an intense flux of polarized gamma rays by Compton scattering. For electrons at the energy of the ATF (1.28GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed.