Author: De Gersem, H.
Paper Title Page
WEPC088 Embedding Finite Element Results for Accelerator Components in a Moment Approach Beam Dynamics Code* 2217
 
  • T. Roggen, H. De Gersem, B. Masschaele
    KU Leuven, Kortrijk, Belgium
  • W. Ackermann, S. Franke, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This research is funded by grant ''KUL 3E100118'' ''Electromagnetic Field Simulation for Future Particle Accelerators''.
A moment based beam dynamics code has particular advantages, i.e. accuracy and efficiency, over macro-particle tracking and full particle-in-cell (PIC) codes respectively. Instead of embedding analytical descriptions of the accelerator components in the beam dynamics model, it is proposed to insert a surrogate model obtained from the finite element model of individual accelerator components. We apply the V-Code, which accepts moments up to the sixth order and accounts for space charge effects. We construct and calculate finite element and finite difference time domain models using the CST Studio Suite 2011 software package. An interface is implemented using VBA and MATLAB. As an example of the accuracy of this cascadic simulation approach, we compare the beam dynamics of an S-DALINAC quadrupole obtained by directly tracking particles to the calculated fields with the results for the cascadic approach with the V-Code.
This work was performed during a three month research visit at the Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Darmstadt, Germany.