Author: Dabrowski, A.E.
Paper Title Page
MOPC150 High Charge PHIN Photo Injector at CERN with Fast Phase Switching within the Bunch Train for Beam Combination 430
 
  • M. Divall Csatari, A. Andersson, B. Bolzon, E. Bravin, E. Chevallay, A.E. Dabrowski, S. Döbert, V. Fedosseev, C. Heßler, T. Lefèvre, S. Livesley, R. Losito, O. Mete, M. Olvegård, M. Petrarca, A. Rabiller
    CERN, Geneva, Switzerland
  • A. Drozdy
    BUTE, Budapest, Hungary
  • D. Egger
    EPFL, Lausanne, Switzerland
 
  The high charge PHIN photo-injector was developed within the frame of the European CARE program to provide an alternative to the drive beam thermionic gun in CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 sub-trains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the scheme. Stability measurements are presented for the phase-coded system. The paper also discusses the latest 8nC charge production and cathode life-time studies on Cs2Te.  
 
TUPC021 The CLIC Feasibility Demonstration in CTF3 1042
 
  • P.K. Skowroński, J. Barranco, S. Bettoni, B. Constance, R. Corsini, A.E. Dabrowski, M. Divall Csatari, S. Döbert, A. Dubrovskiy, O. Kononenko, M. Olvegård, T. Persson, A. Rabiller, F. Tecker
    CERN, Geneva, Switzerland
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. Farabolini
    CEA/DSM/IRFU, France
  • R.L. Lillestol
    NTNU, Trondheim, Norway
  • T. Muranaka, A. Palaia, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
 
  The objective of the CLIC Test Facility CTF3 is to demonstrate the feasibility issues of the CLIC two-beam technology: the efficient generation of a very high current drive beam, used as the power source to accelerate the main beam to multi-TeV energies with gradient over 100MeV/m, stable drive beam deceleration over long distances. Results on successful beam acceleration with over 100 MeV/m energy gain are shown. Measurements of drive beam deceleration over a chain of Power Extraction Structures are presented. The achieved RF power levels, the stability of the power production and of the deceleration are discussed. Finally, we overview the remaining issues to be shown until the end of 2011.  
 
THOAA03 Overview of LHC Beam Loss Measurements 2854
 
  • B. Dehning, A.E. Dabrowski, M. Dabrowski, E. Effinger, J. Emery, E. Fadakis, V. Grishin, E.B. Holzer, S. Jackson, G. Kruk, C. Kurfuerst, A. Marsili, M. Misiowiec, E. Nebot Del Busto, A. Nordt, A. Priebe, C. Roderick, M. Sapinski, C. Zamantzas
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  The LHC beam loss monitoring system based on ionization chambers is used for machine protection, quench prevention and accelerator optimization. After one full year of operation it can be stated that its main functionality, that of the protection of equipment, has proven to be very robust with no issues observed for hundreds of critical beam loss events and the number of false beam aborts well below expectation. In addition the injection, dump and collimation system make regular use of the published loss measurements for system analysis and optimisation, such as the determination of collimation efficiency in order to identify possible intensity limitations as early as possible. Intentional magnet quenches have been performed to verify both the calibration accuracy of the system and the accuracy of the loss pattern predictions from simulations. Tests have also been performed with fast loss detectors based on single- and polycrystalline CVD diamond, which are capable of providing nanosecond resolution time loss structure. This presentation will cover all of these aspects and give an outlook on future performance.  
slides icon Slides THOAA03 [1.972 MB]