Author: Corti, G.
Paper Title Page
TUPS025 Design of a Highly Optimised Vacuum Chamber Support for the LHCb Experiment 1581
 
  • L. Leduc, G. Corti, R. Veness
    CERN, Geneva, Switzerland
 
  The beam vacuum chamber in the LHCb experimental area passes through the centre of a large aperture dipole magnet. The vacuum chamber and all its support systems lie in the acceptance of the detector, so must be highly optimised for transparency to particles. As part of the upgrade programme for the LHCb vacuum system, the support system has been re-designed using advanced lightweight materials. In this paper we discuss the physics motivation for the modifications, the criteria for the selection of materials and tests performed to qualify them for the particular environment of a particle physics experiment. We also present the design of the re-optimised support system.  
 
TUPS026 Specification of New Vacuum Chambers for the LHC Experimental Interactions 1584
 
  • R. Veness, R.W. Assmann, A. Ball, A. Behrens, C. Bracco, G. Bregliozzi, R. Bruce, H. Burkhardt, G. Corti, M.A. Gallilee, M. Giovannozzi, B. Goddard, D. Mergelkuhl, E. Métral, M. Nessi, W. Riegler, J. Wenninger
    CERN, Geneva, Switzerland
  • N. Mounet, B. Salvant
    EPFL, Lausanne, Switzerland
 
  The apertures for the vacuum chambers at the interaction points inside the LHC experiments are key both to the safe operation of the LHC machine and to obtaining the best physics performance from the experiments. Following the successful startup of the LHC physics programme the ALICE, ATLAS and CMS experiments have launched projects to improve physics performance by adding detector layers closer to the beam. To achieve this they have requested smaller aperture vacuum chambers to be installed. The first periods of LHC operation have yielded much information both on the performance of the LHC and the stability and alignment of the experiments. In this paper, the new information relating to the aperture of these chambers is presented and a summary is made of analysis of parameters required to safely reduce the vacuum chambers apertures for the high-luminosity experiments ATLAS and CMS.  
 
TUPZ031 Near Beam-gas Backgrounds for LHCb at 3.5 TeV 1876
 
  • D.R. Brett, R. Appleby
    UMAN, Manchester, United Kingdom
  • F. Alessio, G. Corti, R. Jacobsson
    CERN, Geneva, Switzerland
  • M.H. Lieng
    UNIDO, Dortmund, Germany
  • V. Talanov
    IHEP Protvino, Protvino, Moscow Region, Russia
 
  Funding: STFC
We consider the machine induced backgrounds for LHCb arising from collisions of the beam with residual gas in the long straight sections of the LHC close to the experiment. We concentrate on the background particle fluxes initiated by inelastic beam-gas interactions with a direct line of sight to the experiment, with the potential impact on the experiment increasing for larger beam currents and changing gas pressures. In this paper we calculate the background rates for parameters foreseen with LHC running in 2011, using realistic residual pressure profiles. We also discuss the effect of using a pressure profile formulated in terms of equivalent hydrogen, through weighting of other residual gases by their cross section, upon the radial fluxes from the machine and the detector response. We present the expected rates and the error introduced through this approximation.