Author: Coney, L.
Paper Title Page
MOPZ016 MICE Step I: First Measurement of Emittance with Particle Physics Detectors* 853
 
  • L. Coney
    UCR, Riverside, California, USA
  • M. Popovic
    Fermilab, Batavia, USA
  • M.A. Rayner
    DPNC, Genève, Switzerland
 
  The muon ionization cooling experiment (MICE) is a strategic R&D project intending to demonstrate the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders. MICE is under development at the Rutherford Appleton Laboratory (UK). It comprises a dedicated beam line to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam is measured in the upstream magnetic spectrometer with a sci-fiber tracker. A cooling cell will then follow, alternating energy loss in Li-H absorbers and RF acceleration. A second spectrometer identical to the first and a second muon identification system measure the outgoing emittance. In the 2010 run the beam and most detectors have been fully commissioned and a first measurement of the emittance of a beam with particle physics (time-of-flight) detectors has been performed. The analysis of these data should be completed by the time of the Conference. The next steps of more precise measurements, of emittance and emittance reduction (cooling), that will follow in 2011 and later, will also be outlined.
Abstract is submitted by the MICE Speakers Bureau.
If accepted, most likely Dr. Kaplan will present it.
As a first result in a novel sector, we propose it for an oral presentation
 
 
MOPZ035 MICE Muon Beamline Particle Rate and Related Beam Loss in the ISIS Synchrotron 874
 
  • A.J. Dobbs
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • D. Adey
    University of Warwick, Coventry, United Kingdom
  • L. Coney
    UCR, Riverside, California, USA
 
  The international Muon Ionization Cooling Experiment (MICE) will provide a proof of principle of ionization cooling, reduction of muon beam phase space, which will be needed at a future Neutrino Factory and Muon Collider. The MICE muon beam is generated by the decay of pions produced by dipping a cylindrical titanium target into the proton beam of the 800 MeV ISIS synchrotron at the Rutherford Appleton Laboratory, U.K. Studies of the particle rate in the MICE beamline and correlations with induced beam loss in ISIS are described, including the most recent data taken in the summer of 2010, representing some of the highest loss and rate conditions achieved to date. Ideally, a high rate of muons in the MICE beamline is desired, in order to facilitate the cooling measurement. However, impact on the host accelerator equipment must also be minimized. The implications of the observed beam loss and particle rate levels for MICE and ISIS are discussed.