Author: Ciapala, E.
Paper Title Page
MOPC054 The LHC RF System - Experience with Beam Operation 202
 
  • P. Baudrenghien, M. E. Angoletta, T. Argyropoulos, L. Arnaudon, J. Bento, T. Bohl, O. Brunner, A.C. Butterworth, E. Ciapala, F. Dubouchet, J. Esteban Muller, D.C. Glenat, G. Hagmann, W. Höfle, D. Jacquet, M. Jaussi, S. Kouzue, D. Landre, J. Lollierou, P. Maesen, P. Martinez Yanez, T. Mastoridis, J.C. Molendijk, C. Nicou, J. Noirjean, G. Papotti, A.V. Pashnin, G. Pechaud, J. Pradier, J. Sanchez-Quesada, M. Schokker, E.N. Shaposhnikova, D. Stellfeld, J. Tückmantel, D. Valuch, U. Wehrle, F. Weierud
    CERN, Geneva, Switzerland
 
  The LHC RF system commissioning with beam and physics operation for 2010 and 2011 are presented. It became clear in early 2010 that RF noise was not a lifetime limiting factor: the crossing of the much feared 50 Hz line for the synchrotron frequency did not affect the beam. The broadband LHC RF noise is reduced to a level that makes its contribution to beam diffusion in physics well below that of Intra Beam Scattering. Capture losses are also under control, at well below 0.5%. Longitudinal emittance blow-up, needed for ramping of the nominal intensity single bunch, was rapidly commissioned. In 2011, 3.5 TeV/beam physics has been conducted with 1380 bunches at 50 ns spacing, corresponding to 55% of the nominal current. The intensity per bunch (1.3 ·1011 p) is significantly above the nominal 1.15 ·1011. By August 2011 the LHC has accumulated more than 2 fb-1 integrated luminosity, well in excess of the 1 fb-1 target for 2011.  
 
MOPC058 Upgrade of the 200 MHz RF System in the CERN SPS 214
 
  • E.N. Shaposhnikova, E. Ciapala, E. Montesinos
    CERN, Geneva, Switzerland
 
  The 200 MHz RF system, used in the SPS to accelerate all beams including those for the LHC, has four travelling wave structure cavities of different length. To stabilize the future higher intensity LHC beams in the SPS a larger (than now) controlled longitudinal emittance blow-up and therefore larger bucket and voltage amplitude will be necessary. However less voltage will be available in the existing system (which has a maximum peak RF power of 1 MW per cavity) due to the increased beam loading, in particular in the long cavities. This issue will be critical for beam acceleration but especially for beam transfer into the 400 MHz RF system of the LHC. The proposed solution is to shorten the two long cavities and use the freed sections together with spare sections to make two extra cavities and install two new power plants of 1.3 MW each. After this upgrade, which is a major part of the more general SPS upgrade for high luminosity LHC to be completed during 2017, the performance of the SPS RF system with high intensity beams will be significantly improved and at the same time the total impedance of the system will be reduced.