Author: Chunjarean, S.
Paper Title Page
WEPC072 Insertion Devices and Beam Dynamics in the PLS-II Storage Ring 2187
 
  • S. Chunjarean, S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Effects of insertion devices like a superconducting multipole wiggler or an in-vacuum undulator on the beam dynamics of tghe upgraded Pohang Light Source (PLS-II) storage ring have been investigated. The narrow gap related to a short period length of the in-vacuum undulator or a transverse magnetic field roll off can impact the dynamic aperture or Touschek lifetime or injection efficiency. A three dimensional magnetic field model has been developed based on numerical data consisting of several coefficients in the Taylor expansion to accurately represent the actual field. In this paper, the magnetic field model has been produced with the differential algebraic code COSY INFINITY to formulate the Taylor transfer map for the wiggler and undulator. Frequency map analysis (FMA) and full 6D tracking has been performed to investigate resonances which may affect the particle stability and causing a reduction in injection efficiency.  
 
THPC168 Field Error Correction for a Superconducting Undulator 3290
 
  • S. Chunjarean
    PAL, Pohang, Kyungbuk, Republic of Korea
  • C.-S. Hwang, J.C. Jan
    NSRRC, Hsinchu, Taiwan
  • H. Wiedemann
    SLAC, Menlo Park, California, USA
 
  To reach higher photon energies in the region of soft or hard x-rays with high photon beam brightness in low energy storage rings, superconducting undulators with very short period length and high magnetic field strength are required. Because undulator radiation comes in a line spectrum, photons up to the 7th harmonic are desired. The photon brightness in such harmonics is strongly dependent on perfect periodicity of the magnetic field. Such imperfections also appear in conventional permanent material undulators, which can be corrected by well developed and efficient shimming. Unfortunately, this method cannot be applied to superconducting undulators. Therefore, we present a new approach to field corrections by modification of the magnetic field saturation in each pole. In this paper it is shown that this approach can reduce not only the magnetic field error but also greatly improves phase errors from period to period. The proposed method works quite local with only small perturbations in neighboring poles. The tenability is preserved for most of the field excitations and is reduced only at extreme parameters.