Author: Chritin, N.C.
Paper Title Page
MOPO030 Theoretical and Practical Feasibility Demonstration of a Micrometric Remotely Controlled Pre-alignment System for the CLIC Linear Collider 547
 
  • H. Mainaud Durand, M. Anastasopoulos, N.C. Chritin, J. Kemppinen, M. Sosin, S. griffet
    CERN, Geneva, Switzerland
  • T. Touzé
    ENSTA, Brest, France
 
  The active pre-alignment of the Compact Linear Collider (CLIC) is one of the key points of the project: the components must be pre-aligned w.r.t. to a straight line within a few microns over a sliding window of 200 m, along the two linacs of 20 km each. The proposed solution consists of stretched wires of more than 200 m, overlapping over half of their length, which will be the reference of alignment. Wire Positioning Sensors (WPS), coupled to the supports to be pre-aligned, will perform precise and accurate measurements within a few microns, w.r.t. these wires. A micrometric fiducialisation of the components and a micrometric alignment of the components on common supports will make the strategy of pre-alignment complete. In this paper, the global strategy of active pre-alignment is detailed and illustrated by the latest results demonstrating the feasibility of the proposed solution.