Author: Chen, J.F.
Paper Title Page
WEPS098 Combined Momentum Collimation Method in High-intensity Rapid Cycling Proton Synchrotrons 2736
 
  • J.F. Chen, J. Tang, Y. Zou
    IHEP Beijing, Beijing, People's Republic of China
 
  A new momentum collimation method – so-called combined momentum collimation method in high-intensity synchrotrons is proposed and studied here, which makes use two-stage collimation in both the longitudinal and the transverse phase planes. The primary collimator is placed at a high-dispersion location of an arc, and the longitudinal and transverse secondary collimators are in the same arc and in the down-stream dispersion-free long straight section, respectively. The particles with positive momentum deviations will be scattered and degraded by a carbon scraper and then cleaned mainly by the transverse collimators, whereas the particles with negative momentum deviations will be scattered by a tantalum scraper and mainly cleaned by the longitudinal secondary collimators in the successive turns. Numerical simulation results using TURTLE and ORBIT codes show that this method gives high collimation efficiency for medium-energy synchrotrons. The studies have also shown two interesting effects: one is that the momentum collimation is strongly dependent on the transverse beam correlation; the other is that the material for the primary collimator plays an important role in the method.
This work was supported by the National Natural Science Foundation of China (10975150, 10775153), the CAS Knowledge Innovation Program-“CSNS R&D Studies”.