Author: Chan, C.K.
Paper Title Page
TUODB01 Progress of the Construction for the TPS Vacuum System 976
 
  • G.-Y. Hsiung, C.K. Chan, C.H. Chang, C.-C. Chang, C.L. Chen, C.M. Cheng, Y.T. Cheng, S-N. Hsu, H.P. Hsueh, I.T. Huang, T.Y. Lee, I.C. Sheng, L.H. Wu, H.Y. Yan, Y.C. Yang, C.S. huang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  Vacuum system for the 3 GeV Taiwan Photon Source (TPS) has been started the construction since 2010. The critical components such as the bellows and gate valves with rf-contact shielding, pulsed magnet kicker ceramic chambers, BPM, crotch absorbers, etc. have been manufactured and tested. Aluminum alloy (Al-) vacuum chambers for the arc-cells have been machined and undergoing the in-house welding. Mass production of the vacuum equipments including the ion gauges, ion pumps, NEG pumps, and gate valves, has been contracted out and partially delivering following the schedule of the cell assembling. Each cell, contains two short Al-straight chambers and two Al-bending chambers, has been started the assembling and on-site welding on the pre-aligned girders in clean room forming an one-piece vacuum vessel about 14 m in length following by the vacuum baking to the ultra-high vacuum. The conceptual design of the vacuum systems for the long straight sections, the concentric booster, and the transport lines, will be addressed. The progress of prototyping development and the status of construction for the TPS vacuum system will be described in this paper.  
slides icon Slides TUODB01 [35.595 MB]  
 
TUPS030 Manufacturing and Vacuum Testing of Aluminum Bending Chambers for TPS 1596
 
  • Y.C. Yang, C.K. Chan, C.-C. Chang, C.L. Chen, J.-R. Chen, G.-Y. Hsiung, S-N. Hsu, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is an aluminum alloy vacuum system with 518.4 m circumference divided into 24 sections. A6061T6 aluminum alloy material is used for TPS bending chambers. Each aluminum bending chamber is component of 2 half plates, about 3.5~4.2 m in length and~0.6 m in width, were oil-free CNC machined, ozone cleaned, and TIG welding in clean room. The deformation < 0.1 mm and leakage rate < 2x10-9mbar. L/s for each welded bending chamber has inspected and achieved. A bending chamber is inspecting the thermal outgassing rate test and ultimate pressure. The manufacturing and vacuum test will be described in this paper.  
 
TUPS031 The Installation of One 14 Meter Cell of TPS Vacuum System 1599
 
  • H.P. Hsueh, C.K. Chan, C.H. Chang, C.-C. Chang, C.L. Chen, C.M. Cheng, Y.T. Cheng, G.-Y. Hsiung, S-N. Hsu, I.T. Huang, T.Y. Lee, H.Y. Yan, Y.C. Yang, C.S. huang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The construction of a new 3 GeV synchrotron facility, Taiwan Photon Source, is ongoing. The vacuum system has been designed with off-site baking for arc section from sector gate valve to sector gate valve. There is no flange used in this arc section besides the two ends connected to sector gate valves. It is a tedious works for install such long vacuum system with aluminum chambers. In this poster, all the detailed installation procedures will be described. All the precaution inspection procedures for all vacuum components to prevent failed components to be installed will also be described. Every three weeks, one cell will be assembled and stored. Experience is being learned and could be used for the vacuum system of future new accelerator like FEL and others.  
 
THPC146 The Radiated EMI Isolation for TPS Kicker Magnet* 3227
 
  • C.S. Chen, C.K. Chan, C.L. Chen, Y.L. Chu, K.H. Hsu, C.Y. Kuo, Y.-H. Liu, C.-S. Yang
    NSRRC, Hsinchu, Taiwan
 
  Electromagnetic interference is a critical problem for electronic equipment, especially for those sophisticated measuring sensors using in TLS. Therefore, lots of efforts have been made to isolate the EM noise from the kicker magnets. In this article, different thicknesses of aluminum chambers are applied to block the radiated EM noise. Furthermore, the different widths of slits simulate the necessary openings on kicker assembly. According to the results of small-scale experiment, some parameters are obtained to design the enclosure of kicker magnet. Compared the results with the data from the original scale kicker, these parameters provide a believable guideline in the beginning of design status.  
 
THPC147 TPS SR Kicker Prototype Installation Status* 3230
 
  • Y.-H. Liu, C.K. Chan, C.-S. Chen, Y.L. Chu, K.H. Hsu, H.P. Hsueh, C.K. Kuan, C.Y. Kuo, C.-S. Yang
    NSRRC, Hsinchu, Taiwan
 
  The purpose of this paper is to illustrate the installation sequence of TPS SR kicker. Because of adding the rotation function in row direction, the position of every component of kicker must be very precise. The kicker magnet and EMI enclosure were fastened on the rotation motor plate which could rotate ±3.0 mrad. The ceramic chamber remain fixed on the bottom plate in order to let the bellow stress free during rotation. After installation, the inductance measurement and the high voltage breakdown test were also tested. The experimental results showed the good uniformity and reached the expected request. The field mapping and EMI prevention schemes will be tested in the future.