Author: Caspers, F.
Paper Title Page
MOPS071 Simulations of the Impedance of the New PS Wire Scanner Tank 766
 
  • B. Salvant
    EPFL, Lausanne, Switzerland
  • W. Andreazza, F. Caspers, A. Grudiev, J.F. Herranz Alvarez, E. Métral, G. Rumolo
    CERN, Geneva, Switzerland
 
  The CERN PS is equipped with 4 wire scanners. It was identified that the small aperture of the current wire scanner tank causes beam losses and a new tank design was needed. The interaction of the PS bunches with the beam coupling impedance of this new tank may lead to beam degradation and wire damage. This contribution presents impedance studies of the current PS tank as well as the new design in order to assess the need to modify the design and/or install lossy materials plates dedicated to damp higher order cavity modes and reduce the total power deposited by the beam in the tank.  
 
MOPS078 Coaxial Wire Measurements of Ferrite Kicker Magnets 784
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • M.J. Barnes, F. Caspers, H.A. Day, E. Métral, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
 
  Fast kicker magnets are used to inject beam into and eject beam out of the CERN accelerator rings. These kickers are generally transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the yoke can provoke significant beam induced heating, especially for high intensities. In addition the impedance may contribute to beam instabilities. The results of longitudinal and transverse impedance measurements, for various kicker magnets, are presented and compared with analytical calculations: in addition predictions from a numerical analysis are discussed.  
 
MOPS079 Simulations of Coaxial Wire Measurements of the Impedance of Asymmetric Structures 787
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • F. Caspers, H.A. Day, E. Métral
    CERN, Geneva, Switzerland
 
  Coaxial wire measurements have provided a simple and effective way to measure the beam coupling impedance of accelerator structures for a number of years. It has been known how to measure the longitudinal and dipolar transverse impedance using one and two wires for some time. Recently the ability to measure the quadrupolar impedance of structures exhibiting top/bottom and left/right symmetry has been demonstrated. A method for measuring the beam coupling impedance of asymmetric structures using displaced single wires and two wire measurements is proposed. Simulations of the measurement system are presented with further work proposed.  
 
MOPS080 Comparison of the Current LHC Collimators and the SLAC Phase 2 Collimator Impedances 790
 
  • H.A. Day, R.M. Jones
    UMAN, Manchester, United Kingdom
  • F. Caspers, H.A. Day, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  One of the key sources of transverse impedance in the LHC has been the secondary graphite collimators that sit close to the beam at all energies. This limits the stable bunch intensity due to transverse coupled-bunch instabilities and transverse mode coupling instability. To counteract this, new secondary collimators have been proposed for the phase II upgrade of the LHC collimation system. A number of designs based on different jaw materials and mechanical designs have been proposed. A comparison of the beam coupling impedance of these different designs derived from simulations are presented, with reference to the existing phase I secondary collimator design.  
 
TUOAA03 The Linac4 Project at CERN 900
 
  • M. Vretenar, L. Arnaudon, P. Baudrenghien, C. Bertone, Y. Body, J.C. Broere, O. Brunner, M.C.L. Buzio, C. Carli, F. Caspers, J.-P. Corso, J. Coupard, A. Dallocchio, N. Dos Santos, R. Garoby, F. Gerigk, L. Hammouti, K. Hanke, M.A. Jones, I. Kozsar, J.-B. Lallement, J. Lettry, A.M. Lombardi, L.A. Lopez Hernandez, C. Maglioni, S.J. Mathot, S. Maury, B. Mikulec, D. Nisbet, C. Noels, M.M. Paoluzzi, B. Puccio, U. Raich, S. Ramberger, C. Rossi, N. Schwerg, R. Scrivens, G. Vandoni, J. Vollaire, S. Weisz, Th. Zickler
    CERN, Geneva, Switzerland
 
  As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the Proton-Synchrotron Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the LHC schedule for long shut-downs.  
slides icon Slides TUOAA03 [10.347 MB]  
 
TUPC085 Observation of Microwave Radiation using Low-cost Detectors at the ANKA Storage Ring 1203
 
  • V. Judin, N. Hiller, A. Hofmann, E. Huttel, B. Kehrer, M. Klein, S. Marsching, A.-S. Müller, M.J. Nasse, N.J. Smale
    KIT, Karlsruhe, Germany
  • F. Caspers
    CERN, Geneva, Switzerland
  • P. Peier
    PSI, Villigen, Switzerland
 
  Funding: Work supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320
Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed because the waveguide cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: The accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths above the waveguide cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually used in standard TV-SAT-receivers and are very cheap. We determined the time response of LNBs to be below 100 ns. The sensitivity of LNBs is optimized to detect very low intensity "noise-like" signals.
 
 
TUPS103 High Temperature Radio Frequency Loads 1783
 
  • S. Federmann, F. Caspers, A. Grudiev, E. Montesinos, I. Syratchev
    CERN, Geneva, Switzerland
 
  In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet with 150 deg C and more than 20 bar has a certain value. Normal RF power loads containing dielectric and sensitive windows usually do not permit going much higher than 50 deg C. Here we present and discuss several design concepts for narrow-band “metal only” RF high power loads. One concept is the application of normal steel corrugated waveguides structures near cutoff .This concept could find practical use above several GHz. Another solution are resonant structures made of normal magnetic steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage the rather high losses of normal steel may also be used in coaxial line geometries with large dimensions.