Author: Bulyak, E.V.
Paper Title Page
TUPC053 Superconducting Positron Stacking Ring for CLIC 1117
 
  • F. Zimmermann, L. Rinolfi
    CERN, Geneva, Switzerland
  • E.V. Bulyak, P. Gladkikh
    NSC/KIPT, Kharkov, Ukraine
  • T. Omori, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
 
  The generation of polarized positrons for future colliders based on Compton storage rings is a promising method. A challenging key ingredient of this method is the necessary quasi-continuous positron injection into a stacking ring. The ordinary methods of multi-turn injection are not appropriate for this purpose, because the required number of injection-turns is a few hundred, and the emittance of the injected positron bunches is large. This paper describes a possible solution based on 5 GeV superconducting stacking ring, where a novel method of the combined longitudinal and transverse injection process is used to stack positrons. The ring dynamic aperture allows to inject the positron beam with normalized emittance up to 2000 micrometers during a few hundred turns. The injection efficiency is larger than 90% in simulation. The number of the injection turns is only limited by the synchrotron radiation power. The ring lattice and the results of injection simulations are presented.  
 
WEPZ011 Fast Cooling of Bunches in Compton Storage Rings 2790
 
  • E.V. Bulyak
    NSC/KIPT, Kharkov, Ukraine
  • J. Urakawa
    KEK, Ibaraki, Japan
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling', the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.