Author: Briquez, F.
Paper Title Page
TUPC068 SOLEIL Beam Orbit Stability Improvements 1156
 
  • N. Hubert, Y.-M. Abiven, F. Blache, F. Briquez, L. Cassinari, J.-C. Denard, J.-F. Lamarre, P. Lebasque, N. Leclercq, A. Lestrade, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
 
  The electron beam orbit stability has been significantly improved at synchrotron SOLEIL. Low frequency noise sources have been localized and identified: the fans installed on the storage ring to cool down the ceramic chambers of the kickers, shaker and FCT, were slightly wobbling the electron beam orbit at 46, 50, 54 and 108 Hz. The localization method and the solutions that will allow reducing the noise from 0.8 μm RMS down to 0.3 μm are presented. Besides, a new 160 m long beamline, NANOSCOPIUM, is being installed on a canted straight section. Its photon beam position stability requirements are very tight calling for the following improvements: addition of 2 more BPMs and fast correctors in the orbit feedback loops, new INVAR stands for BPM and XBPM integrating Hydrostatic Level System sensors. The paper is also discussing other projects that did or will contribute to improving the beam orbit stability: installation of 145 temperature sensors on the storage ring, a new analog feedforward correction system for insertion devices, and the use of the bending magnet X-BPM measurements in the slow and fast orbit feedback loops.  
 
WEPC050 New Optics for the SOLEIL Storage Ring 2124
 
  • P. Brunelle, F. Briquez, A. Loulergue, O. Marcouillé, A. Nadji, L.S. Nadolski, M.-A. Tordeux, J.F. Zhang
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL, the French 2.75GeV synchrotron light source is delivering photons to 24 beam lines and is presently equipped with 22 insertion devices (ID) including a high field and small gap in-vacuum wiggler*. This paper presents the continuous work performed to reduce the strong non linear effects of several IDs. On one side, the ID defaults have been precisely identified using on-beam measurements, and magnetic correction developments are going on, especially for the in-vacuum wiggler and for the 10m long HU640 undulator. On the other side, a new optics has been optimised in terms of beta-functions (at the ID location) and non linear dynamics in order to improve the injection efficiency and the beam lifetime in the presence of IDs. The modified optics has been used daily in operation since November 2010 and ensures a beam lifetime greater than 10h for a 400mA stored beam with the users ID configuration. In parallel, an extensive experimental optimization has been performed to prepare the operation with an additional quadrupole triplet that provides double low vertical beta functions in one long straight section that will accommodate two canted in-vacuum insertion devices**.
* O. Marcouillé et al., IPAC10, p. 3102 (2010).
** A. Loulergue et al., IPAC10, p. 2496 (2010).
 
 
THPC150 Review of Insertion Device Dedicated to HIgh Energy Photons at SOLEIL 3236
 
  • O. Marcouillé, C. Benabderrahmane, P. Berteaud, F. Briquez, L. Chapuis, M.-E. Couprie, T.K. El Ajjouri, F. Marteau, M. Valléau, J. Vétéran
    SOLEIL, Gif-sur-Yvette, France
 
  Producing high energy photons between 10 keV and 70 keV is a challenging topic in a medium energy storage ring. It requires up-to-date measurement techniques and specific Insertion Device (ID) technologies to produce high magnetic fields and short periods. SOLEIL (2.75 GeV) has designed and built eight conventional in-vacuum hybrid undulators operating at high radiation harmonics and also one small gap multipole wiggler to produce high magnetic field. The construction has been progressively improved by the choice of new magnetic materials of better quality and higher magnetization, additional correction techniques and mechanical changes. A 2-m long full scale cryogenic undulator made of PrFeB and vanadium permendur has been built, measured, corrected and is to be tested on the beam. An additional wiggler dedicated for Slicing experiments has been designed. The required magnetic field is high enough to also consider the ID as a good candidate for the production of hard X-ray photons. This paper presents the ID dedicated for the high energy photons and their spectral performances.