Author: Bravin, E.
Paper Title Page
MOPC150 High Charge PHIN Photo Injector at CERN with Fast Phase Switching within the Bunch Train for Beam Combination 430
 
  • M. Divall Csatari, A. Andersson, B. Bolzon, E. Bravin, E. Chevallay, A.E. Dabrowski, S. Döbert, V. Fedosseev, C. Heßler, T. Lefèvre, S. Livesley, R. Losito, O. Mete, M. Olvegård, M. Petrarca, A. Rabiller
    CERN, Geneva, Switzerland
  • A. Drozdy
    BUTE, Budapest, Hungary
  • D. Egger
    EPFL, Lausanne, Switzerland
 
  The high charge PHIN photo-injector was developed within the frame of the European CARE program to provide an alternative to the drive beam thermionic gun in CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 sub-trains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the scheme. Stability measurements are presented for the phase-coded system. The paper also discusses the latest 8nC charge production and cathode life-time studies on Cs2Te.  
 
TUPC048 First Measurement Results of the LHC Longitudinal Density Monitor 1105
 
  • A. Jeff, M. Andersen, A. Boccardi, S. Bozyigit, E. Bravin, T. Lefèvre, A. Rabiller, F. Roncarolo
    CERN, Geneva, Switzerland
  • A.S. Fisher
    SLAC, Menlo Park, California, USA
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The primary author is funded by the E.U. under the DITANET Marie Curie network.
Knowledge of the longitudinal distribution of particles is important for various aspects of accelerator operation, for example to check the injection quality and to characterize the development of ghost bunches before and during the physics periods. A new detector, the LHC Longitudinal Density Monitor (LDM) is a single-photon counting system measuring synchrotron light by means of an avalanche photodiode detector. The unprecedented energies reached in the LHC allow synchrotron light diagnostics to be used with both protons and heavy ions. The LDM is able to longitudinally profile the whole ring with a resolution close to the target of 50 ps. On-line correction for the effects of the detector deadtime, pile-up and afterpulsing allow a dynamic range of 105 to be achieved. The LDM operated during the 2010 lead ion run and during 2011 with protons. Measurements from both runs are presented in this contribution along with an analysis of the LDM performance and an outlook for future upgrades.
 
 
TUPC168 Results from the LHC BRAN Luminosity Monitor at Increased Luminosities 1428
 
  • R. Miyamoto
    BNL, Upton, Long Island, New York, USA
  • E. Bravin
    CERN, Geneva, Switzerland
  • H.S. Matis, A. Ratti, W.C. Turner, H. Yaver, T. stezelberger
    LBNL, Berkeley, California, USA
 
  Funding: This work supported by the US Department of Energy through the US LHC Accelerator Research Program (LARP).
The LHC BRAN luminosity monitors are used to monitor and optimize the luminosity at the LHC high luminosity interaction points IP1 and IP5. The Argon gas ionization chambers detect showers produced in the TAN absorbers by neutral particles emerging from pp collisions. The detectors have been operated during the 2010 run by counting the shower rate. As the current 2011 run has the multiplicity of proton-proton collisions per bunch crossing near ten, the detector sees more than one collision per bunch crossing. Therefore, the operation of the detector has been switched to pulse height mode to detect the average shower flux. This paper presents results from recent pulse height mode measurements, including the total and bunch-by-bunch luminosity as well as a determination of the crossing angle at these IPs. Comparisons with luminosity measurements from ATLAS and CMS are also presented.