Author: Boscolo, M.
Paper Title Page
WEPC105 Multiparticle Simulation of Intrabeam Scattering for SuperB 2259
 
  • T. Demma, M.E. Biagini, M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • K.L.F. Bane, A. Chao, M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  Intrabeam scattering (IBS) is associated with multiple small angle scattering events leading to emittance growth. In most electron storage rings, the growth rates arising from IBS are much longer than damping times due to synchrotron radiation, and the effect on emittance growth is negligible. However, IBS growth rates increase with increasing bunch charge density, and for storage rings such as SuperB, that operate with high bunch charges and very low vertical emittance, the IBS growth rates can be large enough to produce significant emittance increase. Several formalisms have been developed for calculating IBS growth rates in storage rings*. However these models, based on Gaussian bunch distributions, cannot investigate some interesting aspects of IBS such as its evolution during the damping process and its effect on the beam distribution. We developed a multiparticle tracking code, based on the Binary Collision Model**, to investigate these effects. In this communication we present the structure of the code and simulation results obtained with particular reference to the SuperB parameters. Simulation results are compared with those of conventional IBS theories.
* A. Piwinski, Lect. Notes Phys. 296 (1988); J.D. Bjorken and S.K. Mtingwa, Part. Accel. 13 (1983); K. Kubo et al., Phys. Rev. ST-AB 8 (2005).
** Peicheng Yu et al., Phys. Rev. ST–AB 12 (2009).
 
 
WEPC106 Touschek Effect at DAΦNE for the New KLOE Run in the Crab-Waist Scheme 2262
 
  • M. Boscolo, P. Raimondi
    INFN/LNF, Frascati (Roma), Italy
  • E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • A. Perez
    INFN-Pisa, Pisa, Italy
 
  Funding: Work supported by the EuCARD research programme within the 'Assessment of Novel Accelerator Concepts' work package (ANAC-WP11)
The innovative crab-waist collision scheme has been recently implemented at DAΦNE for a new KLOE run. This scheme requires special attention to the Touschek effect, both for the lifetime and the machine induced backgrounds into the detector. These two aspects have been handled starting from the same Monte Carlo simulation. The DAΦNE optical model has been tuned to keep the effects of Touschek scattering under control with a trade-off between critical parameters, following the indications given by simulations. Connections between numerical results and lattice modifications are discussed here. Dedicated lifetime measurements have been carried out to validate these studies. Particle losses at the IR have been minimized by means of the same optical knobs, but in addition proper shieldings have been implemented to further decrease their impact on the detector performance. IR distributions of the Touschek particle losses have been tracked from the beam pipe into KLOE for direct comparison of measured and expected backgrounds. Moreover, these studies are carried out with the same software tools used for the SuperB factory design, allowing a direct validation test of this approach.
 
 
THPS101 Present and Perspectives of the Sparc THz Source 3669
 
  • E. Chiadroni, M. Bellaveglia, M. Boscolo, M. Castellano, G. Di Pirro, M. Ferrario, G. Gatti, E. Pace, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • P. Calvani, S. Lupi, A. Nucara
    Università di Roma I La Sapienza, Roma, Italy
  • L. Catani, B. Marchetti
    INFN-Roma II, Roma, Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • O. Limaj
    University of Rome La Sapienza, Rome, Italy
  • A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  The development of radiation sources in the THz spectral region has become more and more interesting because of the peculiar characteristics of this radiation: it is non ionizing, it penetrates dielectrics, it is highly absorbed by polar liquids, highly reflected by metals and reveals specific "fingerprint" absorption spectra arising from fundamentals physical processes. The THz source at SPARC is an accelerator based source for research investigations (e.g. material science, biology fields). Its measured peak power is of the order of 108 W, very competitive with respect to other present sources. The present status of the source is presented and future perspectives are presented.  
 
THPS102 Novel Schemes for the Narrow Band Sparc THz Source using a Comb like e-beam 3672
 
  • B. Marchetti
    INFN-Roma II, Roma, Italy
  • M. Boscolo, M. Castellano, E. Chiadroni, M. Ferrario, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  The development of radiation sources in the THz spectral region has become more and more interesting because of the peculiar characteristics of this radiation: it is non ionizing, it penetrates dielectrics, it is highly absorbed by polar liquids, highly reflected by metals and reveals specific "fingerprint" absorption spectra arising from fundamentals physical processes. The THz source at SPARC is an accelerator based source for research investigations (e.g. material science, biology fields). By means of e-beam manipulation technique, a longitudinal modulated beam, the so-called comb beam, can be produced at Sparc. In terms of THz sources, such e-beam distribution allows to produce high intensitiy narrow band THz radiation, whose spectrum strongly depends on the charge distribution inside the e-beam. Different linac schemes are compared. In particular, spectra obtained using the comb-beam compression through velocity bunching including a IV harmonic RF section is showed.  
 
THPZ003 The SuperB Project: Accelerator Status and R&D 3684
 
  • M.E. Biagini, S. Bini, R. Boni, M. Boscolo, B. Buonomo, T. Demma, E. Di Pasquale, A. Drago, L.G. Foggetta, S. Guiducci, S.M. Liuzzo, G. Mazzitelli, L. Pellegrino, M.A. Preger, P. Raimondi, U. Rotundo, C. Sanelli, M. Serio, A. Stecchi, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Baylac, O. Bourrion, J.-M. De Conto, N. Monseu, C. Vescovi
    LPSC, Grenoble, France
  • K.J. Bertsche, A. Brachmann, Y. Cai, A. Chao, M.H. Donald, R.C. Field, A.S. Fisher, D. Kharakh, A. Krasnykh, K.C. Moffeit, Y. Nosochkov, A. Novokhatski, M.T.F. Pivi, J.T. Seeman, M.K. Sullivan, S.P. Weathersby, A.W. Weidemann, U. Wienands, W. Wittmer, G. Yocky
    SLAC, Menlo Park, California, USA
  • S. Bettoni
    PSI, Villigen, Switzerland
  • A.V. Bogomyagkov, I. Koop, E.B. Levichev, S.A. Nikitin, I.N. Okunev, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • B. Bolzon, M. Esposito
    CERN, Geneva, Switzerland
  • F. Bosi
    INFN-Pisa, Pisa, Italy
  • L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • P. Fabbricatore, S. Farinon, R. Musenich
    INFN Genova, Genova, Italy
  • E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • C. Rimbault, A. Variola
    LAL, Orsay, France
  • Y. Zhang
    IHEP Beijing, Beijing, People's Republic of China
 
  The SuperB collider project has been recently approved by the Italian Government as part of the National Research Plan. SuperB is a high luminosity (1036 cm-2 s-1) asymmetric e+e collider at the Y(4S) energy. The design is based on a “large Piwinski angle and Crab Waist” scheme already successfully tested at the DAΦNE Phi-Factory in Frascati, Italy. The project combines the challenges of high luminosity colliders and state-of-the-art synchrotron light sources, with two beams (e+ at 6.7 and e- at 4.2 GeV) with extremely low emittances and small beam sizes at the Interaction Point. As unique features, the electron beam will be longitudinally polarized at the IP and the rings will be able to ramp down to collide at the tau/charm energy threshold with one tenth the luminosity. The relatively low beam currents (about 2 A) will allow for low running (power) costs compared to similar machines. The insertion of beam lines for synchrotron radiation users is the latest feature included in the design. The lattice has been recently modified to accommodate insertion devices for X-rays production. A status of the project and a description of R&D in progress will be presented.  
 
THPZ004 DAΦNE Tune-up for the KLOE-2 Experiment 3687
 
  • C. Milardi, D. Alesini, M.E. Biagini, S. Bini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, T. Demma, E. Di Pasquale, G. Di Pirro, A. Drago, M. Esposito, L.G. Foggetta, A. Gallo, A. Ghigo, S. Guiducci, C. Ligi, S.M. Liuzzo, F. Marcellini, G. Mazzitelli, L. Pellegrino, M.A. Preger, L. Quintieri, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • S. Bettoni
    PSI, Villigen, Switzerland
 
  Funding: Work supported by the EuCARD research programme within the 'Assessment of Novel Accelerator Concepts' work package (ANAC-WP11).
In its continuous evolution DAΦNE, the Frascati lepton collider, is starting a new run for the KLOE-2 experiment, an upgraded version of the KLOE one. A new interaction region, based on the high luminosity Crab-Waist collision scheme, has been designed, built and installed. Several machine subsystems have been revised according to innovative design concepts in order to improve beam dynamics. Collimators and shieldings have been upgraded in order to minimize the background rates on the detector during coasting as well as injection operation. A wide measurement campaign has been undertaken to verify and quantify the effect of the modifications and to tune-up the collider in view of the 3 years long data-taking foreseen to deliver ~5 fb-1 to the experiment.