Author: Boorman, G.E.
Paper Title Page
MOPC049 Bead-pull Test Bench for Studying Accelerating Structures at RHUL 187
 
  • S. Molloy
    ESS, Lund, Sweden
  • R. Ainsworth, G.E. Boorman
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • A. Garbayo
    AVS, Eibar, Gipuzkoa, Spain
  • A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  A bead-pull test stand has been constructed at Royal Holloway, University of London (RHUL) with the ability to provide electric field profile measurements along five degrees of freedom using the perturbation method. In this paper, we present example measurements using the test bench which include a field flatness profile of a 324MHz four vane Radio Frequency Quadrupole (RFQ) model designed as part of the Front End Test Stand (FETS) development at Rutherford Appleton Laboratory (RAL). Mechanical and operational details of the apparatus will also be described, as well as future plans for the development and usage of this facility.  
 
TUPC161 Cavity Beam Position Monitor System for ATF2 1410
 
  • S.T. Boogert, R. Ainsworth, G.E. Boorman, S. Molloy
    Royal Holloway, University of London, Surrey, United Kingdom
  • A.S. Aryshev, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • F.J. Cullinan, N.Y. Joshi, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • J.C. Frisch, D.J. McCormick, J. Nelson, T.J. Smith, G.R. White
    SLAC, Menlo Park, California, USA
  • A. Heo, E.-S. Kim, Y.I. Kim
    KNU, Deagu, Republic of Korea
 
  The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.