Author: Bondarenko, T.V.
Paper Title Page
MOPS037 High Intensity Transient Beam Dynamic Study in Travelling Wave Electron Accelerators with Accounting of Beam Loading Effect 682
 
  • S.M. Polozov, T.V. Bondarenko, E.S. Masunov, V.I. Rashchikov, A.V. Voronkov
    MEPhI, Moscow, Russia
 
  The beam loading effect is one of main problems limiting the beam current. The methods of beam dynamic simulation taking into account the beam loading effect were discussed previously. Simulation methods and the especial code version BEAMDULAD-BL was described in the paper*. The beam loading effect was considered only for traveling wave linacs and for stationary beam only. Now it is important to study the beam dynamics of short current pulses, i.e. for transient process. We can consider only one beam bunch (or a packet of bunches) in a long external RF field pulse in stationary case. The beam radiation and wave fields can be calculated in the quasi-statically approximation. This approximation can not be used for transient mode. The methods of beam dynamics simulation will be discussed in this paper for transient mode. New code version BEAMDULAC-BLNS will be described. The simple test simulations will be carried out.
* A.V. Voronkov et al., "Beam Loading Effect of High Current Trawling Wave Accelerator Dynamic Study", Proc. of IPAC’10, Kyoto, Japan, TUPEA012, p. 1348 (2010).
 
 
TUPC036 S-band ps Pulse Photoinjector for THz Radiation Source 1078
 
  • S.M. Polozov, T.V. Bondarenko
    MEPhI, Moscow, Russia
 
  S-band photoinjectors with ps pulse are becoming promising as e-guns for high-intensity sub-mm wavelength pulse source. Development of accelerating system for photoinjector with ps bunch is reported. The main aim is to develop a model of accelerating structure that provide top accelerating fields in respect to high electric strength and low RF power uses. The accelerating structures consisting of 1.6 cell of disk-loaded waveguide (DLW), 3 cells and 2 half-cells of DLW, 7 cels and 2 half-cells of DLW and accelerating structure based on running wave resonator with 7 cells and 2 half-cells of DLW are studying. The resonant models of these structures and the structures with power ports were designed. Electrodynamics characteristics, electric field distribution for all models were acquired. Accelerating structure consisting of 1.6 cells will operate in pi mode of standing wave, all other structures operate in pi/2 mode traveling wave. Accelerating structure based on running wave resonator with 7 cells and 2 half-cells of DLW has most suitable electrodynamics characteristics and field distribution for sub-mm pulse source according to simulation results.