Author: Benedetti, G.
Paper Title Page
WEPC024 LOCO in the ALBA Storage Ring 2055
 
  • G. Benedetti, D. Einfeld, Z. Martí, M. Muñoz
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a 3 GeV 3rd generation light source which achieved first stored beam in February 2011, and will be commissioned during 2011. The ring comprises of 112 independent quadrupoles grouped in 14 families and 32 combined gradient dipoles powered in series. This paper reviews the process of recovering the design lattice and the symmetry of the machine, and the effects on orbit and lifetime. The main tool employ for this has been the LOCO implementation provided in the Matlab MiddleLayer. First results shows that the main effect on the symmetry is the difference between bending magnets. As this effect can not be compensated locally at present at the bendings, a global optics correction using all the quadrupoles is used.  
 
WEPC025 Modeling Results of the ALBA Booster 2058
 
  • G. Benedetti, D. Einfeld, U. Iriso, J. Marcos, Z. Martí, M. Muñoz, M. Pont
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The 3rd generation light source ALBA is in the process of being commissioned. The full energy 3 GeV booster synchrotron was commissioned in the during 2010, ramping the beam from extracted from the LINAC from an energy of 110 MeV to the 3 GeV required for injection in the storage ring. The lattice is based in combined function bending magnets, providing a small emittance beam (< 12 nmrad) at extraction. This paper reviews the agreement between the optics modeling and the measures performed during the commissioning, with special regard to the optics measurement during the ramping process. The results from the magnetic measurement for the combined magnets while ramping are included in the model to explain the movement of the tunes during the ramp.  
 
THPC056 Orbit Studies during ALBA Commissioning 3020
 
  • M. Muñoz, G. Benedetti, D. Einfeld, Z. Martí
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The 3rd generation light source ALBA is in the commissioning stage. This paper review the results of the commissioning concerning the transversal beam behavior, in particular the orbit correction system, results from the beam based alignment (BBA), and coupling. The orbit control system of ALBA consists of 88 horizontal and vertical correctors, mounted as extra coils in the sextupole magnets, up to 104 LIBERA BPMs (brilliance version). The correctors magnets would be used for both static orbit correction and for the fast orbit feedback mode, providing up to 1 mrad of correction in the static case. In phase one of the commissioning, the orbit has been corrected down to values of 50 um rms, with an estimated emittance ratio in the order of 1% .