Author: Belver-Aguilar, C.
Paper Title Page
TUPC011 Striplines for CLIC Pre-Damping and Damping Rings* 1012
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes, G. Rumolo
    CERN, Geneva, Switzerland
  • F. Toral
    CIEMAT, Madrid, Spain
  • C. Zannini
    EPFL, Lausanne, Switzerland
 
  The Compact Linear Collider (CLIC) study explores the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve, through synchrotron radiation, the very low emittance needed to fulfil the luminosity requirements. The specifications for the kicker systems are very challenging and include very low beam coupling impedance and excellent field homogeneity: striplines have been chosen for the kicker elements. Analytical calculations have been carried out to determine the effect of tapering upon the high frequency beam coupling impedance. In addition detailed numerical modeling of the field homogeneity has been performed and the sensitivity of the homogeneity to various parameters, including stripline cross-section, has been studied. This paper presents the main conclusions of the beam impedance calculations and field homogeneity predictions.  
 
TUPC129 A Beam Position System for Hadrontherapy Facilities 1323
 
  • A. Faus-Golfe, C. Belver-Aguilar, C. Blanch Gutierrez, J.J. García-Garrigós
    IFIC, Valencia, Spain
  • E. Benveniste, M. Haguenauer, P. Poilleux
    LLR, Palaiseau, France
 
  Funding: MICINN-FPA:AIC10-D-000518
Essential parts of the needed instrumentation for the beam control in the Hadrontherapy accelerators are the Beam Position Monitors (BPM). The measurement of the beam position in Hadronterapy accelerators become more important at the secondary transport lines towards the patient room where this parameter must be completely determined. The BPM described in this paper is a new type of BPM based on four scintillating fibers coupled to four photodiodes to detect the light produced by the fibers when intercepting the beam. We present here the study of the different photodiodes able to read the light emitted by the scintillating fiber, the tests performed in order to find the most suitable photodiode to measure the beam position from the variations in the beam current, the mechanical design and the corresponding acquisition electronics.