REPTIL - Relativistic 3D Space Charge Particle Tracking Using the Fast Multipole Method

TECHNISCHE UNIVERSITÄT DARMSTADT

<u>S. Schmid</u>, E. Gjonaj, and H. De Gersem Institut für Theorie Elektromagnetischer Felder, TU Darmstadt

ICAP 2018

October 20-24, 2018, Key West, Florida, USA

Motivation: Simulation of High Brightness Photo Injectors

(Image source: http://pitz.desy.de/research_and_development/machine/)

Structure

- I. Fast Multipole Methods
- II. Numerical Convergence and Performance
 - i. Particle Based Fast Multipole Method
- ii. Mesh Based Fast Multipole Method
- III. Simulation of the PITZ Injector
- IV. Outlook

Fast Multipole Methods The Concept

Approximation of far field contributions

Direct computation of near field contributions

+

Fast Multipole Methods The Concept

- 1. Compute multipole expansion ($l \le l_{max}$) of particles contained in each leaf box.
- 2. Express multipoles in parent node as sum of contributions from child nodes.
- 3. Approximate distant ($\theta \le \theta_{max}$) multipoles as local expansion.
- 4. Express local expansion in the coordinates of the child nodes.
- 5. Evaluate $F_{distant}$ and F_{near} for each particle in the leaf.

Convergence and Performance Particle FMM: Gaussian Bunch

Convergence and Performance Particle FMM: Admissibility Parameter θ_{max}

Convergence and Performance Particle FMM: Numerical Convergence Study

Convergence and Performance Particle FMM: Multipole Expansion Order *l_{max}*

Convergence and Performance Particle FMM: Numerical Convergence Study

Convergence and Performance Mesh FMM: Charge Deposition & Tree Structure

Particle FMM

Mesh FMM

Reduced Mesh FMM

Convergence and Performance Mesh FMM: Smoothening Single Particle Noise

 $\Delta_{\vec{x}} = 2.5 \cdot 10^{-5} \text{ m}$ $\Rightarrow \sigma(E_x) \sim 10^6 V/m$ $\Delta_{\vec{x}} = 2.5 \cdot 10^{-6} \text{ m}$ $\Rightarrow \sigma(E_x) \sim 10^6 \text{ V/m}$

TECHNISCHE UNIVERSITÄT

DARMSTADT

Convergence and Performance Mesh FMM: Numerical Convergence Study

Convergence and Performance Performance Studies: PPM, FMM & Mesh FMM

Simulation of the PITZ Injector 3D Space Charge Particle Tracking

(Emission with Astra 2D - 3D tracking started at z = 10 cm)

Simulation of the PITZ Injector 3D Space Charge Particle Tracking

Single particle noise increases ϵ_t of FMM/PPM w.r.t. Astra3D

Ongoing work: Investigate smoothening using mesh

position x

Simulation of the PITZ Injector Photoemission w/o Space Charge Limitation

TECHNISCHE UNIVERSITÄT

DARMSTADT

Outlook Agenda for the REPTIL FMM Code

Status Quo:

- + Satisfactory performance results for REPTIL FMM simulations
- Non-optimized code segments slow down computation

Ongoing and Future Code Development:

Optimization of REPTIL

Parallelized 3D space charge tracking code for accelerator applications

Step by step towards self consistent photo emission models
<u>Simulation of high current particle injectors</u>

