

Alexander Plastun,

Peter N. Ostroumov, Antonio C.C. Villari, Qiang Zhao

October 24, 2018

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Facility for Rare Isotope Beams

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Multi-charge state acceleration

Acceleration of several charge states is possible. Synchronous phases are joint through the condition:

$$\left(\frac{q}{A}\right)_i \cos\varphi_{s,q} = \frac{q_0}{A}\cos\varphi_{s,q}$$

P.N. Ostroumov and K. W. Shepard, Multiple-charge beam dynamics in an ion linac, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 030101 (2000)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Front-end + CMA

FRIB Front End consists of

- lon sources
- 90 kV Accelerating tube
- Beamlines to separate beam charge states
- Magnetic and electrostatic lenses to transport the beam
- Dipole magnets and e-bends to bend beam trajectory
- Radio-Frequency Quadrupole (RFQ) injector
- Multi-harmonic buncher (MHB) and ReBunchers
- Beam diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

 $\beta = v/c$

RT lon source

Multi – Harmonic Buncher

Multi-Harmonic Buncher resonates at 3 harmonics – 40.25 MHz, 80.5 MHz, 120.75 MHz

Purpose of MHB is to:

- Provide small **longitudinal emittance** of the beam
- Provide bunched beam no need to bunch inside the RFQ, i.e. RFQ can be shorter
- Provide matching with the RFQ acceptance

We didn't have any tools to characterize the beam longitudinal emittance...

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

Simulation-based tuning of MHB

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

Emittance measurements

MHB Tune	Maximum Transmission	Minimum ε
Simulated emittance (π·keV/u·ns)	0.14	0.12
Measured emittance (π·keV/u·ns)	0.19	0.14

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Simulation-based tuning of the MHB

1st Harmonic Scan (Simulation data) 2nd Harmonic Scan (Simulation data) (inits) 3.8 Simulated 3.4 3.0 - 60 (control - 50 ළු 2.6 ild 2.2 40 E 1.8 1.4 30 1.0 · MHB 2nd harn 20 15 0.6 · BHW 0.2 -180-150-120 -90 -60 -30 0 30 60 90 120 150 180 180-150-120 -90 -60 -30 0 30 60 90 120 150 180 RFQ RF Phase (deg) 2nd Harmonic Scan (Measurement data) 1st Harmonic Scan (Measured data) (inits) 3.8 Measured (control 3.4 -- 60 50 -g 2.6 · 1.8 · 1.4 -1.0 -30 20 ts 0.6 -HHW 0.2 · MHB -180-150-120-90 -60 -30 0 30 60 90 120 150 180 -180-900 90 180 RFQ RF Phase (deg) Single 1st harmonic scan Single 2nd harmonic scan

2D scans of MHB harmonics

3rd harmonic calibration considers combination of the 2nd and 3rd harmonics.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

Alexander Plastun, Slide 8

Simulated

Measured

RFQ RF Phase (deg)

RFQ RF Phase (deg)

FRIB Front-end + CMA

FRIB Front End consists of

- lon sources
- 90 kV Accelerating tube
- Beamlines to separate beam charge states
- Magnetic and electrostatic lenses to transport the beam
- Dipole magnets and e-bends to bend beam trajectory
- Radio-Frequency Quadrupole (RFQ) injector
- Multi-harmonic buncher (MHB) and ReBunchers
- Beam diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

RT lon source

RFQ

RFQ phase is always zero. Voltage is calibrated by *Threshold voltage* measurement.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

RFQ

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

RFQ

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

RFQ Acceptance

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

RFQ Acceptance

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

RFQ Longitudinal Acceptance

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

RFQ Longitudinal Acceptance

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

FRIB Front-end + CMA

FRIB Front End consists of

- lon sources
- 90 kV Accelerating tube
- Beamlines to separate beam charge states
- Magnetic and electrostatic lenses to transport the beam
- Dipole magnets and e-bends to bend beam trajectory
- Radio-Frequency Quadrupole (RFQ) injector
- Multi-harmonic buncher (MHB) and ReBunchers
- Beam diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018

 $\beta = v/c$

RT lon source

Cavity tuning

٠

• Energy gain Time-of-Flight measurement :

$$L_{12} = N\beta\lambda + \beta\lambda \frac{\varphi_2 - \varphi_1}{360^{\circ}} \qquad N, M, K \text{ - integers}$$

$$L_{23} = M\beta\lambda + \beta\lambda \frac{\varphi_3 - \varphi_2}{360^{\circ}} \qquad W = W_0 \left(\frac{1}{\sqrt{1 - \beta^2}} - 1\right)$$

$$L_{23} = K\beta\lambda + \beta\lambda \frac{\varphi_3 - \varphi_1}{360^{\circ}} \qquad U_{eff} = \frac{\Delta W}{qcos\varphi}$$

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Rebuncher scan

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

MSU Reaccelerator Upgrade

New RFQ electrodes with trapezoidal simulation Designed with CST VBA Macro

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

MSU Reaccelerator Upgrade

Rebuncher for ReA6. Multiphysics design performed in CST.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Computations at FRIB

- Multiphysics Design & Simulations
- Optimization
- Control & Measurements

Acknowledgements

Authors would like to thank our colleagues for their help with the experiments:

Tomofumi Maruta, Takashi Yoshimoto, Haitao Ren, Jeff Stetson, Shane Renteria, Guillaume Machicoane, Eduard Pozdeyev, Colin Morton, Scott Cogan, Steve Lidia, Sang-hoon Kim, Shen Zhao, and many other physicists and engineers of FRIB.

Authors thank Brahim Mustapha from ANL for the support with TRACK code.

This material is based upon work supported by the National Science Foundation under Grant No. PHY-1565546.

Thank you for your attention!

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

ICAP18, October 24, 2018