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@ Methods for measurement of anomalous MDM and EDM using
storage rings rely on electrostatic particle optical elements.

@ Accordingly, it is necessary to accurately model main and
fringe fields of electrostatic elements.

@ In particular, inaccurate treatment of fringe fields of
electrostatic elements provides a mechanism for energy
conservation violation.



Presentation Qutline

@ Fringe Fields of Electrostatic Deflectors

© Main and Fringe Fields of the Muon g-2 Collaboration
Quadrupole



Section 1

Fringe Fields of Electrostatic Deflectors




Conformal Mappings
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The Schwarz—Christoffel mapping f (z) = \/z maps the upper half-plane to the upper-right quadrant of
the complex plane. (Image source: Kapania et al.)

@ A conformal mapping (or conformal map) is a transformation f : C — C
that is locally angle-preserving.

@ Conformal mappings satisfy Cauchy-Riemann equations, which is useful
for solving the Laplace equation.



@ Using conformal mappings, we ob-

tained electrostatic field falloffs
for semi-infinite capacitors with
infinitely thin, infinitely thick,
and finitely thick plates, including
plates with rounded edges.

There is a good agreement with
fringe fields of several finite rectan-
gular electrostatic capacitors ob-
tained using a boundary element
method (BEM) field solver.

Fringe Fields of Semi-Infinite Capacitors
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Comparison of field falloffs of several semi-
infinite capacitors computed in the SC Tool-
box with field falloffs of two finite rectangular
capacitors computed in COULOMB.



Fringe Fields of Two Adjacent Semi-Infinite Capacitors

E)

w
The plot csm t?heﬁleﬂ:2 shwow; tHe ezlecl?ros::atii: field and equipotenztial lines of twowadjaczent semi-infinite
capacitors with plates of 3D /4 thickness, symmetric voltages, and rounded edges. The plot on the right
shows the electrostatic field Exg g (z) (blue) of two adjacent semi-infinite capacitors with plates of D/2
thickness and different voltages V4 = 1 and Vg = 3, individual fields E4 (z) (orange) and Eg (z) (green)
of each capacitor as in empty space, and the difference Epg g (z) — Eg (z) (dashed red) that would be
equal to Ex (z) without electrostatic induction.

We also modeled fringe fields of two adjacent semi-infinite capacitors with
finitely thick plates and symmetric, antisymmetric, and different voltages.



Accurate Fringe Fields Representation

@ We found that the field falloff of an electrostatic deflector is slower
than exponential.

are not

® Enge functions of the form Fy (z) = — (=X ( )7
exp

suitable for accurate modeling of the asymptotlc behavior of said
falloffs.
@ We found that the alternative function
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models field falloffs of electrostatic deflectors accurately.



Accurate Fringe Fields Representation
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The plot onthe left shows an Eng:a0 function Il_;, (z) (jashéd redg, fitted to the electrostatic field falloff
Ex (z) (solid blue) of a semi-infinite capacitor with infinitely thin plates. The plot on the right shows a
function (dashed red) of the alternative form H (z), fitted to Ex (z) (solid blue) and enhanced in the interval
—3.5 < z/D < 6.5 by adding a Fourier exponential series expansion of the difference E, (z) — H (z).




Section 2

Main and Fringe Fields of the Muon g-2

Collaboration Quadrupole




Main Field of the Muon g-2 Collaboration Quadrupole

The main field of an electrostatic element such
as the Muon g-2 collaboration quadrupole may
be obtained using the following method:

@ Calculate the electrostatic potential us-
ing conformal mapping methods with
one plate at 1 V and the other Dirich-
let boundary conditions (the remaining
plates, the rectangular enclosure, and the

trolley ralls) of 0V. The Muon g-2 collaboration quadrupole.

. Image source: Semertzidis et al.
© Apply plate distance errors as perturba- ( )

tions to four copies of the potential, each
copy corresponding to one plate at 1 V
and the other Dirichlet boundary condi-
tions of 0 V.

© Apply appropriate rotations to these four
copies of the potential, scale the copies
(e.g., by £2.4 x 10* or with mispowered
values), and use their superposition.

The Muon ring at Fermilab. (Image
source: FNAL.)



Nominal Symmetric and Non-Symmetric Models
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The plots on the left and right show the polygonal model of the Muon g-2 collaboration quadrupole in
the SM and NSM cases, respectively.

@ We considered two polygonal models of the cross section: (1) the
nominal case with symmetric voltages and no geometric asymmetries
("SM™), and (2) the general case of mispowered plates and geometric
asymmetries (“NSM").

@ In the former case, the polygonal model is simplified using reflection and
rotation symmetries.



Conformal Mapping Derivative

In both cases, the derivative of the conformal mapping f from the canonical
domain to the physical domain is

f'(z) = cen (z|m) dn (z|m) H(sn (z|m) — sn (x; + iy;|m))

Jj=1

where sn, cn, and dn are the Jacobi elliptic functionsl, K is the complete
elliptic integral of the first kind?, the parameters n and « were obtained from
the polygonal model, and the parameters x, y, m, and ¢ were found using the
SC Toolbox.

! Definitions of the Jacobi elliptic functions can be found at
http://mathworld.wolfram.com/JacobiEllipticFunctions.html.

2The complete elliptic integral of the first kind is defined at
http://mathworld.wolfram.com/
CompleteEllipticIntegraloftheFirstKind.html


http://mathworld.wolfram.com/JacobiEllipticFunctions.html
http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html
http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html

Multipole Terms
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The plot on the left shows a heatmap plot of the multipole expansion of the electrostatic potential in the
NSM case, up to order 24. The plot on the right shows a contour plot of the multipole expansion of the
electrostatic potential in the NSM case, orders 3 to 24.

@ We obtained the multipole expansion of the electrostatic potential using
the differential-algebraic (DA) inverse of the conformal mapping, as well
as using Fourier analysis applied to the conventional inverse.

@ The conformal mappings method has the advantage of an analytic, fully
Maxwellian formula and allows rapid recalculations with adjustments to
the geometry and mispowered plates.

@ The applicability of the conformal mapping method is limited by the
crowding phenomenon; it can be expanded to more complex geometries
using the cross ratios of the Delaunay triangulation (CRDT) algorithm.



Fringe Field of the Muon g-2 Collaboration Quadrupole
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@ We obtained the quadrupole strength — o
falloff and the EFB zgrp = 1.2195cm
for the Muon g-2 collaboration
quadrupole by calculating Fourier
modes of its electrostatic potential at
a set of radii in the transversal plane.
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@ The electrostatic potential data was " * ° : e
) ) . Falloffs of 2nd order Fourier
obtained using a BEM field solver modes a2 (r;) calculated at  radii
r = 1.8,2.1,2.4,2.7,3.0 cm from
from a 3D model of the quadrupole. Wu's field data,  Curves with larger

@ For a confirmatory comparison magnitudes correspond to larger radii.

we applied the same method of
calculating multipole strengths to
the electrostatic field data obtained
for the Muon g-2 collaboration
quadrupole using Opera-3d's finite
element method (FEM) field solver
by Wanwei Wu (FNAL).



Results Based on Soltner—Valetov and Wu Field Data

Some computational noise
is noticable here in Opera-3d.

0.5

s [cm]

-10 -5 0 5 10
The falloff of the multipole term M, > agrees well between calculations based on Soltner—Valetov field
data (zgpp = 1.2195 cm; solid blue) and field data by Wu (zgpp = 1.1233 cm; dashed red).

@ The field falloffs and the EFBs obtained from Soltner—Valetov and Wu
field data are in good agreement, and so are the tunes based on them.

@ The quadrupole strength and the EFBs we obtained using this method
explained the experimentally measured tunes, while simple estimates
based on a linear model exhibited discrepancies up to 2%.
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