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Motivation

Methods for measurement of anomalous MDM and EDM using
storage rings rely on electrostatic particle optical elements.
Accordingly, it is necessary to accurately model main and
fringe fields of electrostatic elements.
In particular, inaccurate treatment of fringe fields of
electrostatic elements provides a mechanism for energy
conservation violation.
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Section 1

Fringe Fields of Electrostatic Deflectors



Conformal Mappings

The Schwarz–Christoffel mapping f (z) =
√
z maps the upper half-plane to the upper-right quadrant of

the complex plane. (Image source: Kapania et al.)

A conformal mapping (or conformal map) is a transformation f : C→ C
that is locally angle-preserving.

Conformal mappings satisfy Cauchy-Riemann equations, which is useful
for solving the Laplace equation.



Fringe Fields of Semi-Infinite Capacitors

SC Toolbox, inf. thin plate COULOMB, small rect. plate of D/4 thickness

SC Toolbox, rounded plate of D/20 thickness SC Toolbox, rounded plate of D/4 thickness

COULOMB, large rect. plate of D/4 thickness SC Toolbox, inf. thick plate
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Comparison of field falloffs of several semi-
infinite capacitors computed in the SC Tool-
box with field falloffs of two finite rectangular
capacitors computed in COULOMB.

Using conformal mappings, we ob-
tained electrostatic field falloffs
for semi-infinite capacitors with
infinitely thin, infinitely thick,
and finitely thick plates, including
plates with rounded edges.

There is a good agreement with
fringe fields of several finite rectan-
gular electrostatic capacitors ob-
tained using a boundary element
method (BEM) field solver.



Fringe Fields of Two Adjacent Semi-Infinite Capacitors
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The plot on the left shows the electrostatic field and equipotential lines of two adjacent semi-infinite
capacitors with plates of 3D/4 thickness, symmetric voltages, and rounded edges. The plot on the right
shows the electrostatic field EA&B (z) (blue) of two adjacent semi-infinite capacitors with plates of D/2
thickness and different voltages VA = 1 and VB = 3, individual fields EA (z) (orange) and EB (z) (green)
of each capacitor as in empty space, and the difference EA&B (z) − EB (z) (dashed red) that would be
equal to EA (z) without electrostatic induction.

We also modeled fringe fields of two adjacent semi-infinite capacitors with
finitely thick plates and symmetric, antisymmetric, and different voltages.



Accurate Fringe Fields Representation

We found that the field falloff of an electrostatic deflector is slower
than exponential.
Enge functions of the form FN (z) = 1

1+exp
(∑N

j=1 aj( z
D )

j−1
) are not

suitable for accurate modeling of the asymptotic behavior of said
falloffs.
We found that the alternative function
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models field falloffs of electrostatic deflectors accurately.



Accurate Fringe Fields Representation
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The plot on the left shows an Enge function F5 (z) (dashed red), fitted to the electrostatic field falloff
Ex (z) (solid blue) of a semi-infinite capacitor with infinitely thin plates. The plot on the right shows a
function (dashed red) of the alternative form H (z), fitted to Ex (z) (solid blue) and enhanced in the interval
−3.5 ≤ z/D ≤ 6.5 by adding a Fourier exponential series expansion of the difference Ex (z)− H (z).



Section 2

Main and Fringe Fields of the Muon g -2
Collaboration Quadrupole



Main Field of the Muon g -2 Collaboration Quadrupole

The Muon g-2 collaboration quadrupole.
(Image source: Semertzidis et al.)

The Muon ring at Fermilab. (Image
source: FNAL.)

The main field of an electrostatic element such
as the Muon g -2 collaboration quadrupole may
be obtained using the following method:

1 Calculate the electrostatic potential us-
ing conformal mapping methods with
one plate at 1 V and the other Dirich-
let boundary conditions (the remaining
plates, the rectangular enclosure, and the
trolley rails) of 0 V.

2 Apply plate distance errors as perturba-
tions to four copies of the potential, each
copy corresponding to one plate at 1 V
and the other Dirichlet boundary condi-
tions of 0 V.

3 Apply appropriate rotations to these four
copies of the potential, scale the copies
(e.g., by ±2.4× 104 or with mispowered
values), and use their superposition.



Nominal Symmetric and Non-Symmetric Models

The plots on the left and right show the polygonal model of the Muon g-2 collaboration quadrupole in
the SM and NSM cases, respectively.

We considered two polygonal models of the cross section: (1) the
nominal case with symmetric voltages and no geometric asymmetries
(“SM”), and (2) the general case of mispowered plates and geometric
asymmetries (“NSM”).

In the former case, the polygonal model is simplified using reflection and
rotation symmetries.



Conformal Mapping Derivative

In both cases, the derivative of the conformal mapping f from the canonical
domain to the physical domain is

f ′ (z) = c cn (z |m) dn (z |m)
n∏

j=1

(sn (z |m)− sn (xj + iyj |m))αj−1 ,

where sn, cn, and dn are the Jacobi elliptic functions1, K is the complete
elliptic integral of the first kind2, the parameters n and α were obtained from
the polygonal model, and the parameters x , y , m, and c were found using the
SC Toolbox.

1Definitions of the Jacobi elliptic functions can be found at
http://mathworld.wolfram.com/JacobiEllipticFunctions.html.

2The complete elliptic integral of the first kind is defined at
http://mathworld.wolfram.com/
CompleteEllipticIntegraloftheFirstKind.html.

http://mathworld.wolfram.com/JacobiEllipticFunctions.html
http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html
http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html


Multipole Terms

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

-4 -2 0 2 4

-4

-2

0

2

4

-0.00100

-0.00001

-1.×10-7

-1.×10-9

1.×10-9

1.×10-7

0.00001

0.00100

The plot on the left shows a heatmap plot of the multipole expansion of the electrostatic potential in the
NSM case, up to order 24. The plot on the right shows a contour plot of the multipole expansion of the
electrostatic potential in the NSM case, orders 3 to 24.

We obtained the multipole expansion of the electrostatic potential using
the differential-algebraic (DA) inverse of the conformal mapping, as well
as using Fourier analysis applied to the conventional inverse.

The conformal mappings method has the advantage of an analytic, fully
Maxwellian formula and allows rapid recalculations with adjustments to
the geometry and mispowered plates.

The applicability of the conformal mapping method is limited by the
crowding phenomenon; it can be expanded to more complex geometries
using the cross ratios of the Delaunay triangulation (CRDT) algorithm.



Fringe Field of the Muon g -2 Collaboration Quadrupole

Falloffs of 2nd order Fourier
modes a2

(
rj
)

calculated at radii
r = 1.8, 2.1, 2.4, 2.7, 3.0 cm from
Wu’s field data. Curves with larger
magnitudes correspond to larger radii.

We obtained the quadrupole strength
falloff and the EFB zEFB = 1.2195cm
for the Muon g -2 collaboration
quadrupole by calculating Fourier
modes of its electrostatic potential at
a set of radii in the transversal plane.

The electrostatic potential data was
obtained using a BEM field solver
from a 3D model of the quadrupole.

For a confirmatory comparison,
we applied the same method of
calculating multipole strengths to
the electrostatic field data obtained
for the Muon g -2 collaboration
quadrupole using Opera-3d’s finite
element method (FEM) field solver
by Wanwei Wu (FNAL).



Results Based on Soltner–Valetov and Wu Field Data

Some computational noise
is noticable here in Opera-3d.

The falloff of the multipole term M2,2 agrees well between calculations based on Soltner–Valetov field
data (zEFB = 1.2195 cm; solid blue) and field data by Wu (zEFB = 1.1233 cm; dashed red).

The field falloffs and the EFBs obtained from Soltner–Valetov and Wu
field data are in good agreement, and so are the tunes based on them.

The quadrupole strength and the EFBs we obtained using this method
explained the experimentally measured tunes, while simple estimates
based on a linear model exhibited discrepancies up to 2%.
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