ESS Accelerator Lattice Design Studies and Automatic Synoptic Deployment

Y. Levinsen

M. Eshraqi, T. Grandsaert, H. Kocevar, Ø. Midttun, N. Milas, R. Miyamoto, C. Plostinar, A. Ponton, R. de Prisco, T. Shea, H. D. Thomsen

ICAP'18

October 23, 2018

Table of Contents

2 Lattice Change Control & Deployment

Integrated Error Studies

ESS Overview

High Power Linear Accelerator:

- Energy: 2 GeV
- Rep. Rate: 14 Hz
- Current: 62.5 mA

Target Station:

- He-gas cooled rotating W-target (5MW average
 - power)
- 42 beam ports

16 Instruments in Construction budget

Committed to deliver 22 instruments by 2028

Peak flux ~30-100 brighter than the ILL

Total cost: 1843 MEuros 2013

on Source

ESS Overview

October 23, 2018

ESS Overview The ESS Linac

Parameter	Value	Unit
Average Power	5	MW
Final Energy	2	GeV
Peak Current	62.5	mA
Pulse Length	2.86	ms
Repetition Rate	14	Hz
Duty Cycle	4	%
	1	

Lattice Change Control & Deployment

The Challenge

- The beam physics design lattice is where element locations originate from in the beginning
- When a machine is built, the survey/alignment data tells you where the element is (or say, ended up)
- In between design start, and machine built, it can be unclear where things are located.

Lattice Change Control & Deployment

The Challenge

- The beam physics design lattice is where element locations originate from in the beginning
- When a machine is built, the survey/alignment data tells you where the element is (or say, ended up)
- In between design start, and machine built, it can be unclear where things are located.

We want to ..

- Provide engineers with the information we have (TraceWin files are not readable in this context)
- Try to keep things automated so that once discrepancies are found and corrected they stay corrected.
- Provide the data in a friendly format.

Merge branch 'next-mamad' into 'next'

TUNE_CAVITY correction

See merge request !25

O 15 jobs from next in 10 minutes and 52 seconds (queued for 3 seconds)

⊷ 1e73e9b2 🚥 🗞

Pipeline Jobs 15

Check_table_consistency	Envelope_tests	Envelope_tests		ests	Deploy
⊙check_csv_tabl 0	⊘a2t	0	(⊙rfq	0	Synoptic-next O
⊘check_major_la 0	@ dmpl	0			
⊘check_synoptic 0	Ødtl	0			
⊘check_tw_tables 0	@hbl	0			
	@hebt	0			
	ebt	0			
	@ mbl	0			
	@ mebt	0			
	(spk	0			

Merge branch 'next-mamad' into 'next'

TUNE_CAVITY correction

See merge request !25

O 15 jobs from next in 10 minutes and 52 seconds (queued for 3 seconds)

 ◆ 1e73e9b2 = 0;

Pipeline Jobs 15

Lattice Change Control & Deployment

Lattice Change Control & Deployment

Boundary conditions

• Excellent loss control \rightarrow 1 W/m loss limit

Boundary conditions

- Excellent loss control \rightarrow 1 W/m loss limit
- Mainly losing particles from longitudinal phase space
 - strong space charge and tune depression
 - mismatch
 - non-linear fields
 - RF field changes/errors
 - errors (misalignment, machining, construction, ...)

Boundary conditions

- Excellent loss control \rightarrow 1 W/m loss limit
- Mainly losing particles from longitudinal phase space
 - strong space charge and tune depression
 - mismatch
 - non-linear fields
 - RF field changes/errors
 - errors (misalignment, machining, construction, ...)
- Want to see if we can include source, LEBT and RFQ in a complete error study.

What errors do we consider?

Static				
Magnets	displacement, rotation, gradient			
Cavities	displacement, rotation, amplitude, phase			
Instrumentation	accuracy			
RFQ	field errors			
Dynamic				
Cavities	amplitude, phase			
Instrumentation	accuracy			

Integrated Error Studies RFQ Tolerances

From A. Ponton, TUPAF067 IPAC'18

Integrated Error Studies

D. Uriot, TraceWin manual

Steps

- Ion Source simulation (IBSimu)
- LEBT with static displacement of solenoids, correctors, diagnostics, correct (envelope?), track (multiparticle)
- RFQ, vane profile randomly generated based on requirements, track (multiparticle)
- MEBT-A2T, static errors, correct (envelope), dynamic errors, track (multiparticle)

Integrated Error Studies

Integrated Error Studies

Frequency jump at 216 MeV clear source of losses

- The ESS construction is moving forward at full force
- We have developed a procedure for lattice control and automatic deployment which has proven useful to us
- Error study starting from source is looking promising but need some more polishing

Backup The ESS Linac

	Energy [MeV]	# modules	cav./mod.	βγ	Temp. [K]	Length [m]
Source	0.075	-	0	-	~ 300	-
LEBT	0.075	-	0	-	~ 300	2.5
RFQ	3.62	1	1	-	~ 300	4.6
MEBT	3.62	-	3	-	~ 300	4.0
DTL	90.0	5	-	-	~ 300	38.9
Spokes	216	13	2	-	~ 2	55.9
Medβ	571	9	4(6C)	0.67	~ 2	76.7
High-β	2000	21	4(5C)	0.86	~ 2	178.9
HEBT	2000	-	-	-	~ 300	239.5

Backup

Backup

- The zero current phase advance per period in all the planes must be less than 90 deg
- The phase advance per meter (average phase advance) variation should be smooth and continuous
- On top of this we want the average phase advance to change monotonically
- The tune depression, k_{sc}/k_0 , must stay above 0.4 in all the planes during acceleration

Backup Tune Depression

LEBT Solenoid Transmission Scan

Backup RFQ Tolerances

Parameter	Symbol	Mean value	90 th percentile range	Unit
Longitudinal emittance	ϵ_ℓ	0.1151	[0.1104; 0.1223]	π .deg.MeV
Transverse emittance	ϵ_t	0.2038	[0.1986; 0.2120]	π .mm.mrad
Transmission	Т	0.9842	[0.9827; 0.9854]	%
Beam center offset	r	0.1266	[0.0027; 0.2548]	mm
Kinetic energy	W	3.6215	[3.6106; 3.6339]	MeV

- RFQ geometrical errors from machining, brazing, and assembly
- Affect RFQ fields by modulating quadrupolar terms and adding dipolar terms

Backup Failure Catalogue

Backup Failure Catalogue

Backup Failure Catalogue

