# Uncertainty Quantification for the Fundamental Mode Spectrum of the European XFEL Cavities

N. Georg<sup>1,2,3,\*</sup>, J. Corno<sup>2,3</sup>, <u>H. De Gersem</u><sup>2,3</sup>, S. Gorgi Zadeh<sup>4</sup>,

U. Römer<sup>1</sup>, S. Schöps<sup>2,3</sup>, A. Sulimov<sup>5</sup>, U. van Rienen<sup>4</sup>

<sup>1</sup>Institute of Dynamics and Vibrations, TU Braunschweig <sup>2</sup>Institut für Theorie Elektromagnetischer Felder, TU Darmstadt <sup>3</sup>Centre for Computational Engineering, TU Darmstadt <sup>4</sup>Theoretical Electrical Engineering, Universität Rostock <sup>5</sup>Deutsches Elektronen-Synchroton DESY



TECHNISCHE UNIVERSITÄT DARMSTADT

\*n.georg@tu-bs.de



October 20 to 24, 2018 | ICAP'18, 13th International Computational Accelerator Physics Conference | Key West, Florida, USA | Herbert De Gersem | 1

## Introduction

#### 9-cell TESLA cavities @ DESY





October 20 to 24, 2018 | ICAP'18, 13th International Computational Accelerator Physics Conference | Key West, Florida, USA | Herbert De Gersem | 2

## Introduction



October 20 to 24, 2018 | ICAP'18, 13th International Computational Accelerator Physics Conference | Key West, Florida, USA | Herbert De Gersem | 2

## **Outline of the Talk**

#### 1 Introduction

#### 2 Inputs

#### 3 Simulations

#### 4 Outputs

#### 5 Inverse problem

#### 6 Conclusion

# INPUTS Uncertain geometry



Geometrical shape of an elliptical cell.

Random event  $\theta$ 

 10 uncertain parameters: equatorial radii R<sup>(i)</sup><sub>eq</sub>(θ), i = 1, ..., 9 of each cell and iris radius R<sub>ir</sub>(θ)

## INPUTS Uncertainty modelling

- Changes in the radii are modelled as beta distributed random variables
  - Shape parameters are chosen such that normal distribution is approximated
  - Probability density function (PDF) has bounded support
- Constraints due to manufacturing (e.g. sorting) lead to correlation



- Black: PDF of beta distribution with support in [-0.3 mm, 0.3 mm].
- Blue, dashed: PDF of normal distribution with  $\mu = 0 \text{ mm}$  and  $\sigma = \frac{0.2}{2} \text{ mm}$ .
- Red, dotted: PDF of uniform distribution with support in [-0.3 mm, 0.3 mm].

## INPUTS Uncertainty modelling

- Changes in the radii are modelled as beta distributed random variables
  - Shape parameters are chosen such that normal distribution is approximated
  - Probability density function (PDF) has bounded support
- Constraints due to manufacturing (e.g. sorting) lead to correlation



- Black: PDF of beta distribution with support in [-0.3 mm, 0.3 mm].
- Blue, dashed: PDF of normal distribution with  $\mu = 0 \text{ mm}$  and  $\sigma = \frac{0.2}{2} \text{ mm}$ .
- Red, dotted: PDF of uniform distribution with support in [-0.3 mm, 0.3 mm].

### INPUTS Kernel density estimates of correlated random variables



# SIMULATIONS Maxwell's eigenproblem

We solve Maxwell's eigenproblem

$$abla imes \left( \frac{1}{\mu_0} \nabla \times \mathbf{E}_i \right) = (2\pi f_i)^2 \epsilon_0 \mathbf{E}_i$$

with PEC boundary conditions.

Using the finite element method in 2D, a high accuracy can easily be achieved (error  $\approx \pm 0.001$  MHz)



# SIMULATIONS Tuning

Each cell whose R<sup>(i)</sup><sub>eq</sub> or R<sub>ir</sub> is changed, is tuned independently by solving for the unknown length L<sup>(i)</sup>

 $f_9(L^{(i)}) - 1.3 \,\mathrm{GHz} = 0.$ 

E.g. the effect of a change in

 $R_{\rm eq}^{(1)} = R_{\rm design}^{(1)} + \Delta R_{\rm eq}^{(1)}$ 

on the accelerating frequency  $f_9$  is compensated by changes in

$$L^{(1)} = L^{(1)}_{\text{design}} + \Delta L^{(1)}.$$



The black line is the 1.3 GHz contour line. The magenta points are the tuning values for  $\Delta L^{(1)}$  obtained for a given value of  $\Delta R_{eq}^{(1)}$  (unique solution).

## SIMULATIONS Polynomial Surrogate Model

- Quantities of interest
  - Fundamental eigenfrequencies *f<sub>i</sub>*, *i* = 1, ..., 9
  - Cell-to-cell coupling

$$k_{\rm cc} = 2 \frac{f_9 - f_1}{f_9 + f_1} \cdot 100\%.$$

# Key Idea

- Compute polynomial surrogate (meta) model of mapping from inputs  $\Delta R_{ir}, \Delta R_{eq}^{(i)}, i = 1, ..., 9$  to outputs  $k_{cc}, f_i, i = 1, ..., 9$ .
- Global polynomial basis functions (Lagrange polynomials)
- Interpolation on collocation points (Leja nodes)



# SIMULATIONS Collocation Points

- Tensor grid: Number of points  $N = N_{\Delta R_{eq}^{(1)}} \cdots N_{\Delta R_{eq}^{(9)}} N_{\Delta R_{ir}}$
- Complexity increases exponentially with the dimension: curse-of-dimensionality
- Sparse grids delay the curse-of-dimensionality
  - A priori construction of sparse grids, cf. Smolyak
  - Adaptive generation of grid is even more efficient<sup>1</sup>
- **500** (non-intrusive) model evaluations  $\rightarrow$  suitable accuracy
- Evaluation of polynomials is almost for free



<sup>&</sup>lt;sup>1</sup>Narayan, Akil, and John D. Jakeman. *Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation*. SIAM Journal on Scientific Computing 36.6 (2014): A2952-A2983.

October 20 to 24, 2018 | ICAP'18, 13th International Computational Accelerator Physics Conference | Key West, Florida, USA | Herbert De Gersem | 10

## OUTPUTS Fundamental mode spectrum

Using  $N^{\text{MC}} = 815983$  random samples  $\{f_i^{(m)}\}_{m=1}^{N^{\text{MC}}}$ , we compute



| Mode i | Mean [MHz] | Std. dev. [MHz] |
|--------|------------|-----------------|
| 1      | 1,276.46   | 0.36            |
| 2      | 1,278.49   | 0.32            |
| 3      | 1,281.64   | 0.28            |
| 4      | 1,285.60   | 0.22            |
| 5      | 1,289.85   | 0.15            |
| 6      | 1,293.84   | 0.09            |
| 7      | 1,297.11   | 0.04            |
| 8      | 1,299.25   | 0.01            |
| 9      | 1,300.00   | 0.00            |

## OUTPUTS Cell-to-cell coupling coefficient

Statistical moments of cell-to-cell coupling coefficient k<sub>cc</sub>

- Mean  $\mathbb{E}[k_{cc}] \approx 1.828$
- Standard deviation  $\sqrt{\text{var}[k_{cc}]} \approx 0.019$
- Analysis of variance-based sensitivity indices (Sobol) yields

$$\frac{\mathrm{var}_{R_{\mathrm{ir}}}[k_{\mathrm{cc}}]}{\mathrm{var}[k_{\mathrm{cc}}]} > 96\%.$$

*k*<sub>cc</sub> is heavily influenced by iris radius
 *R*<sub>ir</sub> while equatorial radii *R*<sup>(i)</sup><sub>eq</sub> have
 significantly less impact → we neglect
 those parameters (use nominal values)



#### **INVERSE PROBLEM**

- Collect measurements of the fundamental mode spectra for M ≈ 400 cavities (manufactured by the same vendor) from the XFEL cavity database
- From measurements, calculate for each cavity *j* the cell-to-cell coupling coefficient k<sub>cc,j</sub>
- For each *k*<sub>cc,j</sub>, we then calculate the deformation in the iris radius by solving

$$\Delta R_{\mathrm{ir},j} = f^{-1}(k_{\mathrm{cc},j})$$

■ For  $j \in [1, ..., M]$  $\begin{bmatrix} \mathbb{E} \left[ k_{cc, j} \right] & \text{Std} \left[ k_{cc, j} \right] & \mathbb{E} \left[ \Delta R_{ir, j} \right] & \text{Std} \left[ \Delta R_{ir, j} \right] \\
1.854 & 0.016 & 0.087 \, \text{mm} & 0.057 \, \text{mm} \\
\end{bmatrix}$ 

• Majority of considered cavities is within specification  $|\Delta R_{ir,j}| \le 0.2 \text{ mm}$ 

## Conclusion

- Incorporation of manufacturing imperfections into numerical simulations
- Modelling of manufacturing process (constraints and tuning)
- Dimension-adaptive sparse grid approximation to significantly reduce computational cost of repeated model evaluations
- Variance-based sensitivity analysis  $\rightarrow$  first steps towards inverse problems

Acknowledgement: The authors would like to acknowledge the support by the DFG (German Research Foundation) in the framework of the Scientific Network SCHM 3127/1,2 *Uncertainty quantification techniques and stochastic models for superconducting radio frequency cavities* that provided the basis for this colloraborative work. The work of J. Corno, H. De Gersem, N. Georg and S. Schöps is supported by the *Excellence Initiative* of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universitat Darmstadt. N. Georg's work is also funded by the DFG grant RO4937/1-1.