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INPUTS
Uncertain geometry

Req

Rir

L

Geometrical shape of an elliptical cell.

� Random event θ

� 10 uncertain parameters:
equatorial radii R(i)

eq(θ), i = 1, ... , 9
of each cell and iris radius Rir(θ)
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INPUTS
Uncertainty modelling

� Changes in the radii are modelled
as beta distributed random
variables

� Shape parameters are chosen
such that normal distribution is
approximated

� Probability density function (PDF)
has bounded support

� Constraints due to manufacturing
(e.g. sorting) lead to correlation
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� Black: PDF of beta distribution with support

in [−0.3 mm, 0.3 mm].

� Blue, dashed: PDF of normal distribution
with µ = 0 mm and σ = 0.2

2 mm.

� Red, dotted: PDF of uniform distribution
with support in [−0.3 mm, 0.3 mm].
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INPUTS
Kernel density estimates of correlated random variables
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SIMULATIONS
Maxwell’s eigenproblem

� We solve Maxwell’s eigenproblem

∇×
(

1
µ0
∇× Ei

)
= (2πfi )

2 ε0Ei

with PEC boundary conditions.

� Using the finite element method in 2D, a high accuracy
can easily be achieved (error ≈ ±0.001 MHz)
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SIMULATIONS
Tuning

� Each cell whose R(i)
eq or Rir is

changed, is tuned independently by
solving for the unknown length L(i)

f9
(
L(i))− 1.3 GHz = 0.

� E.g. the effect of a change in

R(1)
eq = R(1)

design + ∆R(1)
eq

on the accelerating frequency f9 is
compensated by changes in

L(1) = L(1)
design + ∆L(1).
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The black line is the 1.3 GHz contour
line. The magenta points are the tuning

values for ∆L(1) obtained for a given
value of ∆R(1)

eq (unique solution).
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SIMULATIONS
Polynomial Surrogate Model

� Quantities of interest
� Fundamental eigenfrequencies fi , i = 1, ... , 9
� Cell-to-cell coupling

kcc = 2
f9 − f1
f9 + f1

· 100%.

Key Idea
� Compute polynomial surrogate (meta) model of mapping from inputs

∆Rir,∆R(i)
eq, i = 1, ... , 9 to outputs kcc, fi , i = 1, ... , 9.

� Global polynomial basis functions
(Lagrange polynomials)

� Interpolation on collocation points
(Leja nodes)

∆R(1)
eq

∆R(2)
eq
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SIMULATIONS
Collocation Points

� Tensor grid: Number of points
N = N∆R(1)

eq
· · ·N∆R(9)

eq
N∆Rir

� Complexity increases exponentially with the
dimension: curse-of-dimensionality

� Sparse grids delay the curse-of-dimensionality

� A priori construction of sparse grids, cf. Smolyak

� Adaptive generation of grid is even more efficient1

∆R(1)
eq

∆R(2)
eq

� 500 (non-intrusive) model evaluations→ suitable accuracy

� Evaluation of polynomials is almost for free

1Narayan, Akil, and John D. Jakeman. Adaptive Leja sparse grid constructions for stochastic collocation and
high-dimensional approximation. SIAM Journal on Scientific Computing 36.6 (2014): A2952-A2983.
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OUTPUTS
Fundamental mode spectrum

Using NMC = 815983 random samples {f (m)
i }

NMC

m=1 , we compute

EMC[fi ] =
1

NMC

NMC∑
m

f (m)
i

varMC[fi ] =
1

NMC − 1

NMC∑
m

(
f (m)
i − EMC

)2

1 2 3 4 5 6 7 8 9
1270

1280

1290

1300

Mode i

f i
[M

H
z]

Mode i Mean [MHz] Std. dev. [MHz]

1 1,276.46 0.36

2 1,278.49 0.32

3 1,281.64 0.28

4 1,285.60 0.22

5 1,289.85 0.15

6 1,293.84 0.09

7 1,297.11 0.04

8 1,299.25 0.01

9 1,300.00 0.00
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OUTPUTS
Cell-to-cell coupling coefficient

� Statistical moments of cell-to-cell coupling coefficient kcc

� Mean E[kcc] ≈ 1.828
� Standard deviation

√
var[kcc] ≈ 0.019

� Analysis of variance-based sensitivity
indices (Sobol) yields

varRir [kcc]
var[kcc]

> 96%.

� kcc is heavily influenced by iris radius
Rir while equatorial radii R(i)

eq have
significantly less impact→ we neglect
those parameters (use nominal values)
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INVERSE PROBLEM

� Collect measurements of the fundamental mode spectra for M ≈ 400
cavities (manufactured by the same vendor) from the XFEL cavity database

� From measurements, calculate for each cavity j the cell-to-cell coupling
coefficient kcc,j

� For each kcc,j , we then calculate the deformation in the iris radius by solving

∆Rir,j = f−1(kcc,j )

� For j ∈ [1, ... , M]
E
[
kcc,j

]
Std

[
kcc,j

]
E
[
∆Rir,j

]
Std

[
∆Rir,j

]
1.854 0.016 0.087 mm 0.057 mm

� Majority of considered cavities is within specification |∆Rir,j | ≤ 0.2 mm
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Conclusion

� Incorporation of manufacturing imperfections into numerical simulations

� Modelling of manufacturing process (constraints and tuning)

� Dimension-adaptive sparse grid approximation to significantly reduce
computational cost of repeated model evaluations

� Variance-based sensitivity analysis→ first steps towards inverse problems
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