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@ FEL design optimization often involve multiple times simulation
including start-to-end.

o Wiggler-Period-Averaging (WPA) : highly efficient
o Generalize WPA perturbatively using Lie map method

o Leading order : conventional WPA
o Next order corrections : coupling between betatron and wiggling
motion, field envelope gradients,...

@ Improve shot-noise model especailly suited for WPA
o Further improvement : smoother numerical discretization
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Generalize WPA How?

How to generalize WPA from simple averaging?

@ In general, a perturbation map is built in order of small parameters.
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Generalize WPA How?

How to generalize WPA from simple averaging?

@ In general, a perturbation map is built in order of small parameters.
o However, If we build a map over a undulator period,

e the wiggling motion average out

o leaves small coupling effects between the fast wiggling and slow
motions like betatron motion.

@ This idea allow us to generalize WPA with perturbative Lie Map
method

Advances in FEL simulation Oct 23, 2018 6 /37



Perturbative Lie Map

@ Split the Hamiltonian H =S5+ F(z)+ V(2)

LEYLAB ~ NERSC
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Review : Perturbative Lie Map
Perturbative Lie Map

@ Split the Hamiltonian H =S5+ F(z)+ V(2)

o S= ¢ Hdz/A, represent slow motion
o V/(z) is the radiation field potential
o F(z) is the rest : the fast wiggling motion

@ Accordingly, Lie map from z=0 to z = A, is fatored as

A () (M) F () V (M)
S (M) = 75 (Au)
F(A) = F (M)
¥ (M) v (M)
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Generalize WPA

Magnus Series

o Slow
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Generalize WPA Review : Perturbative Lie Map

Magnus Series

o Slow

o Fast
Ye(z) = —/ dz :Fim(zl):

0
1 z V4 . .

-l-—/ dzl/ leQ: [F"(22), F™(21)] -
2! Jo 0
1 z V4 Z . . .

5 [ da [ d [z [P ), [F22), P (20)]]
o 0 0

+ [[Fim(23), Fint(z2)] ,Fint(zl)] .
where Fi"(z;) = .7(z)F(z)
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Generalize WPA Review : Perturbative Lie Map

Magnus Series

o Slow

o Fast

Ye(z) = —/0 dz :Fim(zl):
1 z V4 . .
+§/ dzl/ leQ: [F"(22), F™(21)] -
o 0

_%/02d21/021d22/022d23: [Fint(23), [Fint(ZQ)’ Fim(zl)”
+ [[Fim(23), Fint(z2)] ,Fint(zl)] :

where Fi"(z;) = .7(z)F(z)
o Field Potential

G(z) = — /0 Az () F(2)V(2):
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Generalize WPA Review : Perturbative Lie Map

Next leading order

Leading order (WPA) Next leading order
“s | integand S is linear S includes higher order terms
Gr integrand is F integrand is . F
G\ integrand is . V integrand .. %V
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Hamiltonian

Start from

H(X,p,Ct,—')/;Z) = _\/Yz_l_(px_ax)z_(py_ay)z
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LN T
Hamiltonian

Start from

H(X,p,Ct,—’)/;Z) = _\/Yz_l_(px_ax)z_(p}’_ay)z

where
axy = Kcosh(kex)cosh(kyy)cos(kyz)+ ar
k
a, = Kk—xsinh(kxx)sinh(kyy)cos(kuz)
y
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Generalize WPA Hamiltonian

Hamiltonian

Start from

H(X7P7Ct>_y;z) = _\/’y2 -1 _(pX_aX)2 _(p}’ _ay)z
where

ax K cosh (kxx)cosh (kyy)cos(kyz)+ ar

k
ay Kk—;sinh(kxx)sinh(kyy)cos(kuz)

and we write the vector potential of the radiation field as

ar=%R Z K (x,t;z) eMkr(z=ct)
h>1
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Co-moving frame / FEL phase

@ Canonical transformation using

Gy (ct,n) = [kr (z — ct) + kyz]M

LEYLAB ~ NERSC
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Hamiltenian
Co-moving frame / FEL phase

@ Canonical transformation using
Gy (ct,n) = [kr (z — ct) + kyz]M

@ New Hamiltonian

H = (ky+ k) n — /K202 = 1= (pe — 2x)?
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Hamiltenian
Co-moving frame / FEL phase

@ Canonical transformation using
Gy (ct,n) = [kr (z — ct) + kyz]M

@ New Hamiltonian

H = (ky+ k) n— /K202 = 1= (pe — a2 — (py — 2, )’
@ New longitudinal conjugate pair

0=k (z—ct)+kyz, n=y/k
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Hamiltenian
Co-moving frame / FEL phase

@ Canonical transformation using
Gy (ct,n) = [kr (z — ct) + kyz]M

@ New Hamiltonian

H = (ky+ k) n— /K202 = 1= (pe — a2 — (py — 2, )’
@ New longitudinal conjugate pair

0=k (z—ct)+kyz, n=y/k

e 0’ ~0 on resonance (in undulator), 8’ ~ k, in drift
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Generalize WPA Hamiltonian

Split Hamiltonians
@ Slow Hamiltonian

k 1 K?

S = k—:'}/+z/|:1+P)2<+P}2,+7(1+kﬁxz+k}%y2):|
K?[1 4 _4 4 4 2,2.2 2
+—4 g(kxx —|—kyy )—I—kxkux y

6 2
+ 13(1+K2+§K4>+0(q—l,q—§,i>
(27) 8 YRY

Oct 23, 2018 12 / 37
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Generalize WPA Hamiltonian

Split Hamiltonians
@ Slow Hamiltonian
_ ! >, o, K2 2,2, 122
S = k—57+5[1+px+py+7(1+kxx +k3y?)
K21
4y [5 (ko +igy") +k$k3x2y2}
1 3 6 g2 1
+ 3(1+K2+—K4>+o<q_L,q_§,_>
(27) 8 v
o Fast Hamiltonian
Kéin Keit T 1
= 2k — k L -
2y cos (2kyz) + v px cos (k,z)+ O ke
where Ko = K(1+k§§+k§§)
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Generalize WPA Hamiltonian

Split Hamiltonians
@ Slow Hamiltonian

k 1 K?

S = k—:7+5[1+p§+p)2,+—2 (1+k§x2+k§y2)]
K2 1 4 4 4 4 2,22 2
+—4 g(kxx —|—kyy )+kaux y

6 2
+ 13(1+K2+§K4>+0<q—l,q—§,i)
(27) 8 Y PP

e Fast Hamiltonian

_ K& Keit T 1
= 2k,z)+ k o -
2y cos (2kyz) + v pxcos(kyz)+ O Y.

where Kt = K (1 R 4 kfg)
o Field Potential

K ; Kng® K, K?
vV = -R) " cos (kyz) + 2| Kpe®—Hu2) 1 0 (—th, —:, —”>
h LY Y Yy v v
Oct 23, 2018 12 / 37
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Slow / Fast Map

e Slow Map
Ys(Au) = —A4S
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Slow / Fast Map

e Slow Map
Ys(Au) = —A4S
o Fast Map
K*K2
gF(lu) = _)Lu16k—t2,’}/3

o> S - =, E= 9ac
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Generalize WPA Generator

Slow / Fast Map
e Slow Map
Ys(Au) = —A4S
o Fast Map
K*K2
%,:(QLU) = _)Lu16k—3'}/3

e coupling b/w slow betatron and fast wiggling motion

oeﬁ"ﬁ'ﬁéy == BERKELEY LAB NERsc Advances in FEL simulation Oct 23, 2018 13 / 37



Generalize WPA Generator

Slow / Fast Map
e Slow Map
Ys(Au) = —A4S
o Fast Map
K*K2
%,:(QLU) = _)Lu16k—3'y3

e coupling b/w slow betatron and fast wiggling motion
e small coupling due to large frequency ratio b/w slow and fast motion
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Generalize WPA Generator

Slow / Fast Map
e Slow Map
Ys(Au) = —A4S
o Fast Map
K*K2
%,:(QLU) = _lu16k—3'y3

e coupling b/w slow betatron and fast wiggling motion
e small coupling due to large frequency ratio b/w slow and fast motion

o Can become relavent when strong quads present on top of undulator
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Propagated Field Model

@ Need field modeling in order to evaulate the integration

Gy (2)=— / dz:.F

Split Hamiltonians

(z))Z(z))V(z):

LEYLAB ~ NERSC
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Propagated Field Model

@ Need field modeling in order to evaulate the integration

Gy (2)=— /O Az S (2) T (2)V(z):

@ assumning slowly varying, we model the propagated field enverlope by

d
PR z) aXKh+z8th

Kett
Klm S TFKy~= FKy=Kp+-— sm(k
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@ Need field modeling in order to evaulate the integration

Gy (2)=— /O Az S (2) T (2)V(z):

@ assumning slowly varying, we model the propagated field enverlope by

Ko d
int _ o“
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Ko d
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Propagated Field Model

@ Need field modeling in order to evaulate the integration

Gy (2)=— /O Az S (2) T (2)V(z):

@ assumning slowly varying, we model the propagated field enverlope by

Ko d
int _ o“
K =S FKy= FK, =K+ kuysm(k )aXKh-I-ZaZKh

o Kyp=1 [ Kndz : averaged field envelope
o d,Kj : first order longitudinal variation

@ where we used

Advances in FEL simulation Oct 23, 2018 14 / 37



Propagated Potential

@ Similarily the FEL phase becomes

oM =770 =0+ 0z Esin(2k,z) — {sin(kyz)

where
. K2
6 = ku 2’}/2 1+px+py+ fo
. ke K2,
T 8kyY?
kK
C = ku’)/2 pX
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Propagated Potential

@ Similarily the FEL phase becomes

oM =770 =0+ 0z Esin(2k,z) — {sin(kyz)

where
. K2
6 = ku 2'}/2 1+px+py+ fo
. ke K2,
T 8kyy?
kK
C = ku’)/sz

e Exactly on resonance 8 — 0 . The inclusion of it encompasses small
off-resonant effects.
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Field Potential Map

@ We can write the propagated field potential by
Kef

Vil= 2z = -R)
h

cos (kuz) + 2] (0 -b)
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Field Potential Map

@ We can write the propagated field potential by
th yJV——%Z[ ¥ COS( uZ)—i—p;:| Klnt lh(glm kZ)

@ Therefore, finally, the generator of the field potential reads,

A
Gy = — [ Vidz
0
LR eih@ K h h K ha Kesz ha K
= u - + x/ + >+ / X:|
zf," Y [eﬁ/c Py zC kuyJsc h
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Field Potential Map
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th yJV——%Z[ ¥ COS( uZ)—i—p;:| Klnt lh(glm kZ)

@ Therefore, finally, the generator of the field potential reads,

A
Gy = — [ Vidz
0
LR eih@ K h h K ha Kesz ha K
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Field Potential Map

@ We can write the propagated field potential by
vit= oy ZV = —9?2 [ cos( kuz)+ px] Kinte ih(6™—k,z)
Y Y
@ Therefore, finally, the generator of the field potential reads,

M
Gy = — / Vintdz
0

oih® h h h K2, rh
ARy, —— |:Keff/ +px/ +K/ 0z + = 8X]Kh
no v c 1 zC kyyJsc
where C = cos(k,z), SC =sin(kyz)cos(k,z), and the inegration
parameter is, for example,

h —ih® Ay H int
/ = ¢ / cos (ky,z) (0™ ~kuz) gy
c Au Jo

exp||C|t|y
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Integration Parameters

_kK2
kug

To the 1st order of 8, {, and AE = & — Eg where ég =

"L e mex 1 h IR e
/c - 5( ia F 0 {1 2k 2,‘;4 (2/+/1—1)Jr -« (2I+h+1)
I#=a5% 14—t
_lAgj h-1 ”5R _;,./-,JhéR +EJhg)ﬁ1 _;,./-,_]’“5R +L§1 hé)ﬁz _JhﬁR
28k 28R
h ih6A,\  ho Jher he
_ h-fR ! _hv ! o _n héR h&r ne h5R _ hér
/1 =~ (1+ 2 ) ku/;s » (21+h) A€<2§ Lyt h+1>+ 2 < = T bt >
-2
h A ne he ) i Jher Jhér
- v J R JMeR u ! + /
/zC 1 ( .+ _hp ar I;&;’;—‘ (2I+h-1) I;&—Z“% (2I+h+1)

hER _ hiR

ke )

S

Advances in FEL simulation

: First kind Bessel function of order i and argument h&g, only integer i allowed.
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Integration Parameters

To the 1st order of 6, {, and AE =& — &g where g = & K;z
R

P L g e mex 1 ho IR R
/c - 5( ia F 0 {1 2k Zf (2I+h—1)+ ;&ZM (214 h+1)
T2

£ b3t
—lAéj h-1 th +th5R +h+1Jh§)ﬁr1+th.§R +h£} hgﬁz_Jth
28k 28R
h ih6A,\  ho Jher he
_ h-fR ! _hv I _ _n héR hyher 05 [ jhér —_ jhir
/1 = (1+ 2 ) k“/#g(z"Fh) A€<2§ i R h+1>+ 2 < =3 it it >
h A ne he ) i Jher Jhér
- v J R JMeR u ! + /
/zC 4 ( 1t _hp ax /;&;’;—1 (2/+h-1) I;&—Z“% (2I+h+1)
h
_ hég _ hEr
/SC Y <J g2 J g:rz)

J,.héR : First kind Bessel function of order i and argument h&g, only integer i allowed.

Jsc vanishes for odd harmonics but can be large for even harmonics.
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Effective Hamiltonian

@ Map not yet practically useful
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Generalize WPA Effective Hamiltonian

Effective Hamiltonian

@ Map not yet practically useful

e map is not solvable
e step size is fixed by one undulator period
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Generalize WPA Effective Hamiltonian

Effective Hamiltonian

@ Map not yet practically useful

e map is not solvable
e step size is fixed by one undulator period

@ Instead, we build effective Hamiltonian using Baker-Campbel-Hausdorff
(BCH)

1
Hegr = _l_(gS"‘gF +gV)

1
—— (Y% Y+ Y G+ Y Gy)+...
24
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Generalize WPA Effective Hamiltonian

Effective Hamiltonian

@ Map not yet practically useful

e map is not solvable
e step size is fixed by one undulator period

@ Instead, we build effective Hamiltonian using Baker-Campbel-Hausdorff
(BCH)
1
Hegr = _l_ (gS"‘gF +gV)
1

—— (Y% Y+ Y G+ Y Gy)+...
24

@ Now, it is autonomous — arbitrary step size. Can apply numerical methods
like Runge-Kutta (RK)
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Example

Figure

: Pusher Comparison

lo-3] — wpA
o A = |6 — Oyt ] —— generalizedWPA

o O <using exact H
o Fixed envelope
Ky = Age *2/0% e?/Lc

Ox =55um
L =504,

o eBeam param . .
¥ =1000 10° 10! 102
Ay/y=2x10"* undulator period
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Improve Shot Noise Modeling
Outline

© Improve Shot Noise Modeling
@ Review of shot-noise modeling methods
@ Improved shot-noise modeling methods
o IMPACT code suit and example
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TSRS LNV L P8 Review of shot-noise modeling methods
1D Model

@ Here, we review two 1D methods by Dr. Fawley and Dr. McNeil et.al.
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TSRS LNV L P8 Review of shot-noise modeling methods
1D Model

@ Here, we review two 1D methods by Dr. Fawley and Dr. McNeil et.al.

7| 0 n 6

N 7O

@ 1st step : uniform along temporal coordinate — zero bunching factor
@ Next step : add (temporal coordinate / charge weight) perturbations
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TSRS LNV L P8 Review of shot-noise modeling methods
1D Model

@ Here, we review two 1D methods by Dr. Fawley and Dr. McNeil et.al.

7| 0 n 6

N 7O

@ 1st step : uniform along temporal coordinate — zero bunching factor
@ Next step : add (temporal coordinate / charge weight) perturbations

e to model physical shot noise : correct RMS bunching factor
(bnbj) =1/Ne at least

Advances in FEL simulation Oct 23, 2018 21 /37



TSRS LNV L P8 Review of shot-noise modeling methods

6D extension

@ Here, we review two 6D extension methods of the 1D model.

50 A5D
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TSRS LNV L P8 Review of shot-noise modeling methods

6D extension

@ Here, we review two 6D extension methods of the 1D model.

50 A5D
cooo...."" ® ° ° ® ’e
5D mirroring (Fawley) 6D volume division (McNeil et.al.)
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Improve Shot Noise Modeling
Remarks

@ 5D mirroring
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Remarks

@ 5D mirroring

“beamlet”

o same 5D coordinates x, y, px, py,, Y among a set of particles called

LAB  NERSC
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TSRS LNV L P8 Review of shot-noise modeling methods
Remarks [ 1D Model

@ 5D mirroring

o same 5D coordinates x, y, px, py,, Y among a set of particles called
“beamlet”

o each beamlet is based on 1D model
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e member particles of a beamlet are not statistically independent
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Remarks [ 1D Model

@ 5D mirroring

o same 5D coordinates x, y, px, py,, Y among a set of particles called
“beamlet”

@ each beamlet is based on 1D model
e member particles of a beamlet are not statistically independent

e numerical shot-noise upon particles migration across the numerical
mesh
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TSRS LNV L P8 Review of shot-noise modeling methods
Remarks [ 1D Model

@ 5D mirroring

o same 5D coordinates x, y, px, py,, Y among a set of particles called
“beamlet”

@ each beamlet is based on 1D model
e member particles of a beamlet are not statistically independent

e numerical shot-noise upon particles migration across the numerical
mesh

@ 6D volume division
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TSRS LNV L P8 Review of shot-noise modeling methods
Remarks [ 1D Model

@ 5D mirroring

o same 5D coordinates x, y, px, py,, Y among a set of particles called
“beamlet”

@ each beamlet is based on 1D model
e member particles of a beamlet are not statistically independent

e numerical shot-noise upon particles migration across the numerical
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o same 5D coordinates x, y, px, py,, Y among a set of particles called
“beamlet”

@ each beamlet is based on 1D model
e member particles of a beamlet are not statistically independent
e numerical shot-noise upon particles migration across the numerical
mesh
@ 6D volume division

e comes with the charge perturnbation < Poisson principle
o all particles are statistically indepedent

@ No shot-noise upon particles migration
e requires a lot of particles as division over 6 dimension can be huge
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Beamlet : a statistically independent entity

@ We adopt the 5D mirroring strategy
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Beamlet : a statistically independent entity

@ We adopt the 5D mirroring strategy
@ Our idea is to interpret one beamlet as one statistically independent
entity

o based on the fact that member particles are not statistically indepedent
and

e motion of beamlets are macroscopic (= A,)
e motion of member particles are microscopic (< Ar)

e phase-space coordinate of a beamlet is given by the average over the
member particles in it
e This allows natural loading method :
e random number of particle density functions or
@ external uptream tracking code
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Improved shot-noise modeling methods
Particle Loading

U1
O
@

3
oY

e : beamlet
e : member particle
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(TSRS CLAN IRV A Improved shot-noise modeling methods

Benchmark / shot-noise from migration

@ Migrate all member particles when a beamlet migrate
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Benchmark / shot-noise from migration

@ Migrate all member particles when a beamlet migrate
@ Smoother numerical discretization
e weight and shape functions are evaluated at the beamlet position
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Figure. Benchmark : Beamlet vs individual particle migration.
NGLS-like parameters are used.
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Improved shot-noise modeling methods
Slippage Resolution

o Typical implementation of slippage is to copy the field data from the
previous temporal mesh point to the next temporal mesh point

Data Copy from previous slice

foriin [0,1,2,...,nt]:
Fld.data[:,:,nt-i] = Fld.data[:,:,nt-i-1]

Moving wondow : change of domain

Fld.domain.theta[:]
= Fld.domain.theta[:]+dtheta
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Improved shot-noise modeling methods
Slippage Resolution

o Typical implementation of slippage is to copy the field data from the
previous temporal mesh point to the next temporal mesh point

@ Beamlet migration enables arbitrary slippage resolution through
moving window

e It also allows natural slippage modeling through arbitrary length of
non-resonant tranport like drift

Data Copy from previous slice
foriin [0,1,2,...,nt]:
Fld.data[:,:,nt-i] = Fld.data[:,:,nt-i-1]

Moving wondow : change of domain
Fld.domain.theta[:]
= Fld.domain.theta[:]+dtheta
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Improved shot-noise modeling methods
Copying Data vs Moving Window

108
§ —— Moving Window
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Improved shot-noise modeling methods
Split and Composition

@ Field solver can be split into two operation - diffusion .7, and slippage .7

0.25
— 1st order
0.20 1 —— 2nd order
gg 0.15
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Improved shot-noise modeling methods
Split and Composition

@ Field solver can be split into two operation - diffusion .7, and slippage .7
@ 2nd order composition method

& <A )A(Az)% (AZ>

is possbile due to arbitrary slippage resolution.
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Improve Shot Noise Modeling IMPACT code suit and example

IMPACT code suit and example

All the methods presented are implemented in IMPACT code suite. Example:

3

3
)
o
=
a
&
G
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Conlucsion

@ Advances in numerical methods for FEL simulation under the WPA are
presented

o We generalized WPA perturbatively using Lie map method

@ We improved numerical shot-noise modeling method

e supressed artificial shot-noise upon migration
o enabled smoother numerical descretization

o arbitrary mesh size, weight/shape function, slippage resolution
e increased field solver accuracy

@ All these methods are implemented in beam dynamics simulation
framework IMPACT code suite

Thank you for your attention!
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Appendix

1D Model
7| n 0 n O
—'—.—.—'—.—'—.—)
- 0 n 6
—o— (00—
~ - 0 n 6

@ 1st step : uniform along temporal coordinate — zero bunching factor

0 1 Y ih6;
bh:—ije i =0
Ne &
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Appendix

1D Model
7| n 0 n O
—y—.—.—'—.—'—.—)
- 0 n 6
—o— (00—
~ - 0 n 6

@ 1st step : uniform along temporal coordinate — zero bunching factor

o_ 1 ¢ iho,

_ Afh6; _

bh N Z je
ej=1

@ Next step is to add perturbations to model physical shot noise
:<bhb;§> =1/N,
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Temporal coordinate perturbation

@ Temporal coordinate perturbation (Fawley)

M/2 -
591 = Z éh/e_lhe
h=1

J

N Tl 21, BERKELEY Lap

. NE&Rsc
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Appendix

Temporal coordinate perturbation

@ Temporal coordinate perturbation (Fawley)

M/2 y
69J = Z éh/e—lh 9j
H=1
@ Bunching Factor becomes
bh — i Z m eih(9j+691) ~ Ihéh
Ne =
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Appendix

Temporal coordinate perturbation

@ Temporal coordinate perturbation (Fawley)

m/2 y
56;= ) Ewe MO

H=1
@ Bunching Factor becomes
M
bh = i Z mje’h(ej+69j) ~ Ihéh
e j=1

o Therefore, RMS becomes
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Appendix

Temporal coordinate perturbation

@ Temporal coordinate perturbation (Fawley)

M/2

00; = Z éh/e_"h,ef
W=1
@ Bunching Factor becomes
M
Z h(6j+86;) ~ ihEp

o Therefore, RMS becomes
* * 1

(bnbj) ~ h (Cnp) = N

e

e provided that

(€néh) =1/ (h*Ne)
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Charge weight perturbation

o Charge weight perturbation (McNeil et.al.)
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@ Charge weight perturbation (McNeil et.al.)

o Let Mj = mj;+ dm;j such that
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Charge weight perturbation

@ Charge weight perturbation (McNeil et.al.)

o Let Mj = mj;+ dm;j such that

(bnbh) = 5
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