Mean-field density evolution of bunched particles with non-zero initial velocity

Brandon Zerbe, Phil Duxbury

NSF Grant: 1803719 and RC108666

Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions

Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions

The pancake regime

Cigar (normal) : $\Delta z >> \Delta x$

- Short bunches
- Denser bunches
 - Virtual cathode limit

Valfells, 2002 Physics of Plasmas

- Space-Charge dominated
 - Intense non-linearities
- Cost: Less overall particles

Pancake (UEM) : $\Delta z \ll \Delta x$

Х

Ζ

Aperture → Brightness increase

)

Formation of shock (simulations only – laminar theory does not see this phenomenon)

Formation of shock (simulations only – laminar theory does not see this phenomenon)

Evolution of pancake width – A 1D problem

9

Reed, 2006 J. Appl. Phys.

Evolution of pancake width – A 1D problem

Reed, 2006 J. Appl. Phys.

10

Take aways

- Step away from UEM
 - Discuss cylindrical evolution
- PIC (Vlasov) and N-particle (Coulomb) typical
 - New self-consistent laminar density evolution
 - Validation
 - Identify when it breaks down
- Our previous fluid model has no velocity
 - I fixed that

Laminar beams

Wangler's Prin. RF Linac

The ideal beam with highest beam quality is called the laminar beam because it exhibits laminar-like flow. A laminar beam represents the ideal of a highly ordered and coherent beam, which is never exactly realized.

Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions

Derivation idea

 Lagrangian particle with initial velocity can be mapped to Lagrangian particle at different time that has zero velocity _____

-
$$\mathbf{v}_{r2}$$
: velocity scale $v_{r2} = \sqrt{\frac{q \Lambda_{tot} \overline{\rho}_{02}}{m \epsilon}} r_0$

-
$$\mathbf{r}_{t2}$$
: turn-around radius $r_{t2} = r_0 e^{-v_0^2/v_{r2}^2}$

- t_{ft2}: time-position free expansion relation from turnaround point under spherical symmetry
- t_{t_2} : time to turn around point (- if $v_0 < 0$)
- Time position-relation can be summarized as $t=\pm t_{ft2}-t_{t2}$
- Evolution derived exactly like previously

Cylindrically-symmetric uniform distribution with non-zero initial velocity $v_0 = C \frac{r_0}{R}$ $v_{r2} = 10^5 \frac{m}{s} \frac{r_0}{R}$

Analogous Gaussian

$$v_0 = C \frac{r_0}{\sigma_r}$$
 $v_{r2} = 1.4 \times 10^5 \frac{m}{s} \sqrt{1 - e^{\frac{-r_0^2}{2\sigma_r^2}}}$

Solid lines: Theory

Circles: PIC (Warp)

What is going on here?

$$r_{t2} = r_0 e^{-v_0^2/v_{r2}^2}$$

If
$$v_0 << v_{r2}$$

 $r_{t2} \approx r_0 \longrightarrow \text{Earlier, cold SC-dominated model}$ approximate – slightly delays shock

Initial velocity profile very important

 \rightarrow Here: transforms Gaussian to uniform-like, i.e. it looses the shock

Analogous Gaussian

$$v_0 = C \frac{r_0}{\sigma_r}$$
 $v_{r2} = 1.4 \times 10^5 \frac{m}{s} \sqrt{1 - e^{\frac{-r_0^2}{2\sigma_r^2}}}$

2

Solid lines: Theory

Circles: PIC (Warp)

What is going on here?

$$r_{t2} = r_0 e^{-v_0^2/v_{r2}^2}$$

If
$$v_0 << v_{r2}$$

 $r_{t2} \approx r_0 \longrightarrow \text{Earlier, cold SC-dominated model still}$ approximate – slightly moves shock earlier If $v_0 \gg v_{r2}$

Initial velocity profile very important

 \rightarrow Here: linear velocity breaks laminar assumption in the middle of the bunch, so bunch bounces back faster in model than reality

Cylindrical Gaussian with spatially non-linear initial velocity

$$v_0 = C \sqrt{1 - e^{\frac{-r_0^2}{2\sigma_r^2}}}$$

$$v_{r2} = 1.4 \times 10^5 \frac{m}{s} \sqrt{1 - e^{\frac{-r_0^2}{2\sigma_r^2}}}$$

Outline

I. Literature review

II. New cylindrical expression and validation

III. Conclusions

Conclusions

- Surprisingly accurate self-consistent analytic model that predicts laminar density evolution
 - VERY fast
 - Able to predict through crossovers, i.e. focii
- Predicts when beam becomes non-laminar
 - Temperature?
- Physics captured by velocity scale, v_{r2}
- Spherical case in paper (similar)
- Expect pancake regime to be qualitatively similar to higher dimensions