

An Update on OPAL - the Open Source Charged Particle Accelerator Simulation Framework

A. Adelmann for the OPAL developer team

ICAP - Key West - 23. October 2018

1 Overview

- 2 Selection of Past Achievements
- 3 Code Benchmarking
- 4 Special Features & Work in Progress

The OPAL Developer Team

Ch. Metzger-Kraus S. L. Sheehy

- V. Rizzoglio (*)
- D. Winklehner

P. Xiaoying

- J. Snuverink
- A. Gsell

M. Frey (*)

- Ch. Rogers
- Ch. Wang

A. Adelmann

S. Russel

Y. Ineichen

OPAL is open source ...

Ch. Rogers Ch. Wang

A. Adelmann

Open Source Development

Frequency of master commits 2013-2018:

- hosted on gitlab.psi.ch
- anonymous read-only access with https://gitlab.psi.ch/OPAL/src.git
- write access, please contact me (andreas.adelmann@psi.ch)

OPAL in a Nutshell I

OPAL is an open-source tool for charged-particle optics in large accelerator structures and beam lines including 3D space charge, particle matter interaction, partial GPU support and multi-objective optimisation.

- OPAL is built from the ground up as a parallel application exemplifying the fact that HPC (High Performance Computing) is the third leg of science, complementing theory and the experiment
- OPAL runs on your laptop as well as on the largest HPC clusters
- $\bullet \ {\rm OPAL}$ uses the ${\rm MAD}$ language with extensions
- $\bullet \ {\rm OPAL}$ is written in C++, uses design patterns, easy to extend
- Webpage: https://gitlab.psi.ch/OPAL/src/wikis/home
- the OPAL Discussion Forum:

https://lists.web.psi.ch/mailman/listinfo/opal

• $\mathcal{O}(40)$ users

2 OPAL flavours, <code>OPAL-T</code> & <code>OPAL-CYCL</code> released

- Common features
 - 3D space charge: in unbounded, and bounded domains
 - particle Matter Interaction (protons)
 - multi-objective optimisation
 - from e, p to Uranium (q/m is a parameter)

OPAL-т

- OPAL-T with time as the independent variable, can be used to model beamlines, rf-guns, injectors
- many more linac features like auto-phasing, wake fields, 1D CSR

OPAL-CYCL (+ FFAs + Synchrotrons)

- neighbouring turns
- time integration, 4th-order RK, LF, adaptive schemes
 - [M. Toggweiler, AA, et al. J. Comp. Phys. 273 (2014)]
- find matched distributions with linear space charge
- spiral inflector modelling with space charge

2 OPAL flavours, $\operatorname{OPAL-T}$ & $\operatorname{OPAL-CYCL}$ released

- Common features
 - 3D space charge: in unbounded, and bounded domains
 - particle Matter Interaction (protons)
 - multi-objective optimisation
 - from e, p to Uranium (q/m is a parameter)
 - OPAL-т
 - OPAL-T with time as the independent variable, can be used to model beamlines, rf-guns, injectors
 - many more linac features like auto-phasing, wake fields, 1D CSR
 - OPAL-CYCL (+ FFAs + Synchrotrons)
 - neighbouring turns
 - time integration, 4th-order RK, LF, adaptive schemes
 - [M. Toggweiler, AA, et al. J. Comp. Phys. 273 (2014)]
 - find matched distributions with linear space charge
 - spiral inflector modelling with space charge

2 OPAL flavours, <code>OPAL-T</code> & <code>OPAL-CYCL</code> released

- Common features
 - 3D space charge: in unbounded, and bounded domains
 - particle Matter Interaction (protons)
 - multi-objective optimisation
 - from e, p to Uranium (q/m is a parameter)
 - OPAL-т
 - OPAL-T with time as the independent variable, can be used to model beamlines, rf-guns, injectors
 - many more linac features like auto-phasing, wake fields, 1D CSR
 - OPAL-CYCL (+ FFAs + Synchrotrons)
 - neighbouring turns
 - time integration, 4th-order RK, LF, adaptive schemes [M. Toggweiler, AA, et al. J. Comp. Phys. **273** (2014)]
 - find matched distributions with linear space charge
 - spiral inflector modelling with space charge

Vlasov-Poisson Equation

When neglecting collisions, and taking advantage of the electrostatic approximation, the Vlasov-Poisson equation describes the (time) evolution of the phase space $f(\mathbf{x}, \mathbf{v}; t) > 0$ when considering electromagnetic interaction with charged particles.

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_x f + \frac{q}{m} (\mathbf{E}(\mathbf{x}, t) + \mathbf{v} \times \mathbf{B}(\mathbf{x}, t)) \cdot \nabla_v f = 0.$$
(1)

Solving with ES-PIC

- Hockney and Eastwood, $h_x(t), h_y(t), h_z(t), M = M_x \times M_y \times M_z$
- SAAMG-PCG solver with geometry [AA et al., JCP, 229 12 (2010)]
- change M during simulation (many different field solver instances)
- adaptive in Δt [M. Toggweiler, AA, et al. J. Comp. Phys. **273** (2014)]
- modern computational architectures

Software Architecture

MPI based + HW accelerators + Optimiser

DKS in a Nutshell I

[AA et al., CPC 207 (2016)],[U. Locans, AA, et al., CPC 215 (2017)]

Dynamic Kernel Scheduler (DKS) is a slim software layer between host application and hardware accelerator

Example 1: FFT Poisson solver - results

Example: simulation for the PSI Ring Cyclotron. **Host code 8 cores:** 2x Intel Xeon Processor E5-2609 v2 **Accelerator:** Nvidia Tesla K20 or Nvidia Tesla K40

FFT size	DKS	Total time (s)	OPAL speedup	Solver t (s)	Solver speedup
	no	324.98		22.53	
64×64×32	K20	311.17	×1.04	7.42	× 3
	K40	293.7	×1.10	7.32	× 3
	no	434.22		206.73	
128×128×64	K20	262.74	× 1.6	32.15	×6.5
	K40	245.08	×1.8	25.87	× 8
	no	2308.05		1879.84	
256×256×128	K20	625.37	× 3.6	202.63	×9.3
	K40	542.73	×4.2	160.87	×11.7
512×512×256	no	3760.46		3327.14	
	K40	716.86	× 5.2	302.49	×11

Example 2: Degrader for proton therapy [Rizzoglio et al. Phys. Rev. AB 20 (2017), Rizzoglio et al. NIM-A 889 (2018)]

MC simulations for the degrader - results

Example: OPAL 1cm thick graphite degrader example. **Host code:** 2x Intel Xeon Processor E5-2609 v2 **Accelerator:** Nvidia Tesla K20, K40 or Intel Xeon Phi 5110p

Particles	DKS	t_{degr} (s)	Degrader speedup	t_{integ} (s)	Integration speedup
10^{5}	no	20.30		3.46	
	MIC	2.29	× 8	0.89	× 4
	K20	0.28	×72	0.15	× 23
	K40	0.19	×107	0.14	× 24
10^{6}	no	206.77		34.93	
	MIC	5.38	× 38	4.62	×7.5
	K20	1.41	× 146	1.83	×19
	K40	1.18	×175	1.21	× 29
10^{7}	no	2048.25		351.64	
	K20	14.4	×142	17.21	× 20
	K40	12.79	× 160	11.43	× 30

Multi-Objective Optimisation with OPAL [Y. Ineichen, AA, et al. (2012), N. Neveu, AA, et al. (2018)]

- Access to all OPAL statistics data as Qols.
- Access to all OPAL variables as design variables
- Specify the MOOP in the OPAL input file
- Runs smoothly with more than 10000 cores
 - Finds Pareto optimal solutions (NSGA-II)
- No tight coupling to parallelisation mechanism
- No tight coupling to optimisation algorithm

1 Overview

- 2 Selection of Past Achievements
- 3 Code Benchmarking
- 4 Special Features & Work in Progress

Selection of Past Achievements

Precise high intensity cyclotron modelling

[Y. Bi, AA, et al., PR-STAB 14(5) (2011)]

Realistic Injection Simulations of a

Cyclotron Spiral Inflector

[Winklehner et al. PR-STAB 20 (2017)]

Neighbouring bunch modelling

[J. Yang, AA, et al., PR-STAB 13(6) (2010)]

Intensity limits of the PSI Injector II cyclotron [Kolano et al. NIM-A 885 (2018)]

S2E Simulation of the DAE δ ALUS Cyclotron

Recently published upgrade of OPAL to perform realistic simulations of spiral inflectors [Winklehner et al. PR-STAB **20** (2017)]:

- $\bullet \ \mathrm{OPAL-CYCL}$ flavour with SAAMG-PCG solver
- Geometry loaded as *.vtk, OPAL performs initialization with voxelization for fast intersection tests at runtime
- Consider complicated spiral inflector- and grounded electrodes as boundary conditions for field solver (mirror charges) and particle termination

S2E Simulation of the DAE δ ALUS Cyclotronr

S2E ERL bERLinPro

Triggered a full 3D version of OPAL-T (lead by Ch. Metzger)

Solution: place elements in 3D space.

- include all elements only once although traversed twice $(n \times)$
- add apertures to all elements
- add origin and initial orientation of beamline (elements)

Curtesy of Ch. Metzger-Kraus (HZB), [B. Kuske, M. Abo-Bakr (2017), B. Kuske, Ch. Metzger-Kraus, Ch. Metzger-Kraus et al.]

1 Overview

- 2 Selection of Past Achievements
- 3 Code Benchmarking
- 4 Special Features & Work in Progress

Code Benchmarking

[N. Neveu. 2016]

Code Benchmarking

[N. Neveu. 2016]

500-kV Low-Emittance Electron Source

[T. Schietinger et al., 2008]

The SwissFEL Injector Test Facility Gun

[T. Schietinger et al., 2010]

1 Overview

- 2 Selection of Past Achievements
- 3 Code Benchmarking
- 4 Special Features & Work in Progress

Sketch of an OPAL Inputfile (only optimiser cmd's) I

AWA Photo Injector

dv1: DVAR, VARIABLE=P1, LO	WERBO
$dv_2: DVAR$, $VARIABLE=GO$, LO	WERBO
dv3: DVAR, VARIABLE=G1, LOW	ERBOU
dv4: DVAR, VARIABLE=K1, LOW	ERBOU
dv5: DVAR, VARIABLE=K2, LOW	ERBOU

LOWERBOUND = -10.0.. LOWERBOUND = -10.0 .. LOWERBOUND = 60.0 .. LOWERBOUND = 15.0 .. LOWERBOUND = 400.0 .. LOWERBOUND = 180.0 ..

```
rmsx: OBJECTIVE,EXPR=statVariableAt(rms_x ,3.1);
rmsy: OBJECTIVE,EXPR=statVariableAt(rms_y,3.1);
rmss: OBJECTIVE,EXPR=statVariableAt(rms_s,3.1);
```

```
emitx: OBJECTIVE,EXPR=statVariableAt(emit_x,3.1);
emity: OBJECTIVE,EXPR=statVariableAt(emit_y,3.1);
emits: OBJECTIVE,EXPR=statVariableAt(emit_s,3.1);
de: OBJECTIVE,EXPR=fabs(statVariableAt(dE,3.1));
```


Sketch of an OPAL Inputfile (only optimiser cmd's) II

AWA Photo Injector

```
OPTIMIZE, INPUT="tmpl/ga-model.tmpl",
  OUTPUT="ga-model", OUTDIR="results",
  OBJECTIVES = {rmsx,rmsy,rmss,emitx,emity,emits,de},
  DVARS = \{dv0, dv1, dv2, dv3, dv4, dv5, dv6\},\
  INITIALPOPULATION=656,
  MAXGENERATIONS=100,
  NUM MASTERS=1.
  NUM_COWORKERS = 8,
  SIMTMPDIR="tmp",
  TEMPLATEDIR="tmpl",
  FIELDMAPDIR="fieldmaps",
  NUM_IND_GEN=328,
  GENE_MUTATION_PROBABILITY=0.8,
  MUTATION_PROBABILITY=0.8,
  RECOMBINATION_PROBABILITY=0.2;
```

https://gitlab.psi.ch/OPAL/Manual-2.0/wikis/optimiser

The OPAL sampler command I

```
dvO: DVAR, VARIABLE=PO, LOWERBOUND=-10.0..
dv1: DVAR, VARIABLE=P1 , LOWERBOUND=-10.0 ..
dv2: DVAR, VARIABLE=GO, LOWERBOUND=60.0 ...
dv3: DVAR, VARIABLE=G1, LOWERBOUND=15.0 ..
dv4: DVAR, VARIABLE=K1, LOWERBOUND=400.0 ...
dv5: DVAR, VARIABLE=K2, LOWERBOUND=180.0 ...
SMO: SAMPLING, VARIABLE="dv0", TYPE="UNIFORM" ...
SM1: SAMPLING, VARIABLE="dv1", TYPE="UNIFORM" ...
SM2: SAMPLING, VARIABLE="dv2", TYPE="UNIFORM" ...
SM3: SAMPLING, VARIABLE="dv3", TYPE="UNIFORM" ...
SM4: SAMPLING, VARIABLE="dv4", TYPE="UNIFORM" ...
SM5: SAMPLING, VARIABLE="dv5", TYPE="UNIFORM" ...
SM6: SAMPLING, VARIABLE="dv6", TYPE="UNIFORM" ...
```


The OPAL sampler command II

```
SAMPLE, INPUT= "rand_sample.tmpl",TEMPLATEDIR="tmpl",
OUTPUT= "rand_sample",
OUTDIR= "results",
RASTER= false,
DVARS= {dv0, dv1, dv2, dv3, dv4, dv5, dv6},
SAMPLINGS= {SM0, SM1, SM2, SM3, SM4, SM5, SM6},
FIELDMAPDIR= "fieldmaps",
NUM_MASTERS= 1,
NUM_COWORKERS= 8;
```

https://gitlab.psi.ch/OPAL/Manual-2.0/wikis/sampler

High Power FFA Modeling

Ch. Rogers, S. Sheey (RAL)

- ramps for rf and magnets can be specified (via. polynomial)
- analytic field scaling for FFAs
- rf fringe-fields

ERIT tracking

OPAL-MAP (work in progress)

PSI Gantry-2 optics (MSc. thesis P. Ganz)

- truncated power series and Lie-Methods
- maps up to arbitrary

Collisions (work in progress)

- Model emission of ultra cold electrons
- understand Coulomb scattering (Borsch effect) [J. Qiang, et.al]
- o do we have to worry about it in next generation machines?
- Model non Gaussian tails (high intensity hadron machines)

The

$$P^{3}M = Particle-Particle + Particle-Mesh$$

is a efficient way to accomplish this task.

- high resolution from PP part: $\mathcal{O}(K^2), K \ll N$, $1/(\boldsymbol{x} \boldsymbol{x'} + \varepsilon)$
- good performance from PM part: ${f \Phi}({m x})=\int G({m x},{m x}')
 ho({m x}')d^3{m x}'$
- adjustable influence of Coulomb collisions by fixing K in choosing r_c

Disorder Induced Heating

Simulation Results MSc. thesis B. Ulmer

number of plasma periods

Disorder Induced Heating

Simulation Results MSc. thesis B. Ulmer

number of plasma periods

OPAL at CPO & ICAP

- K. Nesteruk "Large momentum acceptance beam optics of a superconducting gantry for proton therapy"
- **N. Neveu** "Comparison of model based and heuristic optimization algorithms applied to photoinjectors using libEnsemble"
- **A. Edelen** "Surrogate models for beam dynamics in charged particle accelerators"
- **M. Frey** "Computer architecture Independent adaptive geometric multigrid Solver for AMR-PIC"
- **M. Frey** "Trimcoil optimization using multi-objective optimization techniques and HPC"
- **M. Kranjcevic** "Constrained multi-objective shape optimization of superconducting RF cavities to counteract dangerous higher order modes"

References I

- [AA et al., JCP, 229 12 (2010)] A. Adelmann, P. Arbenz, et al., J. Comp. Phys, 229 (12): 4554 (2010)
- [N. Neveu, AA, et al. (2018)] , arXiv:1302.2889, 2018
- [Kolano et al. NIM-A 885 (2018)] A. Kolanoa, AA, et al. NIM-A Volume 885, 21 March 2018, Pages 54:D59
- [Rizzoglio et al. NIM-A 889 (2018)] V. Rizzoglio, AA, et al. NIM-A Volume 898, 1 August 2018, Pages 1-10
- [Winklehner et al. PR-STAB 20 (2017)] D. Winklehner, AA, et al. Phys. Rev. Accel. BeamsÊ20, 124201 (2017)
- [Rizzoglio et al. Phys. Rev. AB 20 (2017)] V. Rizzoglio, AA, et al. Phys. Rev. Accel. BeamsÊ20, 124702 (2017)
- [U. Locans, AA, et al., CPC 215 (2017)] U. Locans, AA, et al., CPC 215 "71 80" (2017)
- [AA et al., CPC 207 (2016)] AA, et al., CPC, dx.doi.org/10.1016/j.cpc.2016.05.013
- [M. Toggweiler, AA, et al. J. Comp. Phys. 273 (2014)] , J. Comp. Phys. 273 : 255-267 (2014)
- [J. Yang, AA, et al., NIM-A 704(11) (2013)] J. Yang, AA et al., NIM-A 704(11) 84-91 (2013)
- [Y. Bi, AA, et al., PR-STAB 14(5) (2011)] Y. Bi, AA et al., Phys. Rev. STAB 14(5) 054402 (2011)
- [J. Yang, AA, et al., PR-STAB 13(6) (2010)] J. Yang, AA, et al., Phys. Rev. STAB 13(6) 064201 (2010)
- [AA et al., JCP, 229 12 (2010)] AA, P. Arbenz, et al., J. Comp. Phys, 229 (12): 4554 (2010)
- [N. Neveu, 2016] N.R. Neveu, A. Adelmann, G. Ha, C.J. Metzger-Kraus, P. Piot, J.G. Power, et al., "Benchmark of RF Photoinjector and Dipole Using ASTRA, CPT, and OPAL", in Proc. North American Particle Accelerator Conf. (NAPAC'16), Chicago, IL, USA, Oct. 2016, paper THPOA46, pp. 1194–1196, https://jacow.org/napac2016/papers/thpoa46.pdf, https://doi.org/10.18429/JAC04-NAPAC2016-THPDA46, 2017.
- [Y. Ineichen, ETH Ph.D Thesis (2013)] Y. Ineichen ETH-Diss 21114, 2013
- [Y. Ineichen, AA, et al. (2012)] Computer Science Research and Development, pp. 1-8. Springer, Heidelberg, 2012.
- [B. Kuske, M. Abo-Bakr (2017)] IPAC2017, Copenhagen, Denmark, accelconf.web.cern.ch/AccelConf/ipac2017/papers/mopab033.pdf

References II

[B. Kuske, Ch. Metzger-Kraus] IPAC2016, Busan, South Korea, accelconf.web.cern.ch/AccelConf/ipac2016/papers/thoba03.pdf

[Ch. Metzger-Kraus et al.] IPAC2016, Busan, South Korea, accelconf.web.cern.ch/AccelConf/ipac2016/papers/wepoy034.pdf

- [S. L. Sheehy, et al.] IPAC2015, Richmont, USA, http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopje077.pdf
- [T. Schietinger et al., 2010] Linac2010, Tsukuba, Japan, https://accelconf.web.cern.ch/accelconf/LINAC2010/papers/tup009.pdf
- [T. Schietinger et al., 2008] Linac2008, Vancouver, Canada, http://www.triumf.info/hosted/LINAC08/conferenceguide.pdf
- [J. Qiang, et.al] IPAC 2007, 10.1109/PAC.2007.4441024