

Upgrade of MAD-X for HL-LHC project and FCC studies ICAP'18

L. Deniau, A. Latina, T. Persson, I. Shreyber, P. Skowronski, H. Burkhardt, R. De Maria, M. Giovannozzi, J.M. Jowett, F. Schmidt - CERN. T. Gläßle - HIT, Germany.

October 20-24, 2018, Key West, Florida, USA

BE Beams Department

Overview

- MAD-X = Methodical Accelerator Design 10
 - delivered on Linux, MacOSX and Windows (32 & 64 bits).
 - → standalone all-in-one application (no dependency), open source, CERN copyright.
 - → 3-4 releases / year, built and tested every night (~ 500 test suites).
 - ⇒ support, website, e-groups, git repository, issue tracker (~600 tickets).
 - directly available from AFS (worldwide) shared file system for Linux.

Overview

- MAD-X = Methodical Accelerator Design 10
 - delivered on Linux, MacOSX and Windows (32 & 64 bits).
 - standalone all-in-one application (no dependency), open source, CERN copyright.
 - → 3-4 releases / year, built and tested every night (~ 500 test suites).
 - ⇒ support, website, e-groups, git repository, issue tracker (~600 tickets).
 - directly available from AFS (worldwide) shared file system for Linux.
- Single particle beam code.
 - motion of particles in 5D-6D phase space under external fields.
 - design, optics, tracking, matching, slicing, orbit steering, orbit correction, orbit measures, fields and alignment errors, aperture offsets, aperture margins, emittance equilibrium, frozen space charge, radiation, survey, plots, etc...

Overview

- MAD-X = Methodical Accelerator Design 10
 - delivered on Linux, MacOSX and Windows (32 & 64 bits).
 - standalone all-in-one application (no dependency), open source, CERN copyright.
 - → 3-4 releases / year, built and tested every night (~ 500 test suites).
 - ⇒ support, website, e-groups, git repository, issue tracker (~600 tickets).
 - directly available from AFS (worldwide) shared file system for Linux.
- Single particle beam code.
 - motion of particles in 5D-6D phase space under external fields.
 - design, optics, tracking, matching, slicing, orbit steering, orbit correction, orbit measures, fields and alignment errors, aperture offsets, aperture margins, emittance equilibrium, frozen space charge, radiation, survey, plots, etc...
- Scripting language.
 - sequences, commands, variables, macros, tables, files, and more...
 - ⇒ special constructs: if-else, while, macro, line, table.
 - deferred expressions (bx := sqrt(betx);).
 - global workspace.

- MAD-X is an all-in-one application for
 - → machine design (reference @ CERN).
 - optics and tracking calculation.
 - validation, tolerances, margins, studies.
 - optimisations (e.g. from measurements).
 - → legacy physics for large machines (e.g. LHC).
 - → PTC for smaller machines, 6D (also 4D, 5D, 56D), complex topology, high orders.
 - front-end to Sixtrack (long term tracking, DA studies).
 - education (CAS, JUAS, CERN tech. training).

- MAD-X is an all-in-one application for
 - → machine design (reference @ CERN).
 - optics and tracking calculation.
 - validation, tolerances, margins, studies.
 - optimisations (e.g. from measurements).
 - → legacy physics for large machines (e.g. LHC).
 - → PTC for smaller machines, 6D (also 4D, 5D, 56D), complex topology, high orders.
 - front-end to Sixtrack (long term tracking, DA studies).
 - education (CAS, JUAS, CERN tech. training).
- CERN has ~8 millions lines of MAD-X scripts.
 - → +95% are clones or generated (history, variants, layout dump).

- MAD-X is an all-in-one application for
 - → machine design (reference @ CERN).
 - optics and tracking calculation.
 - validation, tolerances, margins, studies.
 - optimisations (e.g. from measurements).
 - → legacy physics for large machines (e.g. LHC).
 - → PTC for smaller machines, 6D (also 4D, 5D, 56D), complex topology, high orders.
 - front-end to Sixtrack (long term tracking, DA studies).
 - education (CAS, JUAS, CERN tech. training).
- CERN has ~8 millions lines of MAD-X scripts.
 - → +95% are clones or generated (history, variants, layout dump).
- Used world wide.
 - community is about 500 users.
 - used in many projects (often ignored by team).
 - → colliders, boosters, storage rings, linacs, gantries, transfer lines, FFAG, racetracks, ...

Scripting language

Scripting language

• Weak string "parsing", still good enough for complex macros (=input generator).

Scripting language

Weak string "parsing", still good enough for complex macros (=input generator).

```
sorttable(tblname, colname, coldir) : macro = { ! optimized shellsort
 sorttable. g = 1 ; sorttable.count = 0 ;
 sorttable. n = table(tblname, tablelength)+1;
 while (sorttable. g <= sorttable. n+1) {</pre>
   sorttable. q = sorttable. q * 3 + 1;
 sorttable. g = floor(sorttable.__g / 3);
 while ( sorttable. g > 0 ) {
   sorttable. i = sorttable. g;
   while (sorttable. i < sorttable. n) {</pre>
     setvars table = tblname, row = sorttable. i ; sorttable. t = colname*coldir ;
     fill
             table = tblname, row = sorttable. n;
     sorttable. j = sorttable. i - sorttable.__g ; sorttable.__f = 1 ;
     while (sorttable. j > 0 \&\& sorttable. f > 0) {
       setvars table = tblname, row = sorttable. j ; sorttable. v = colname*coldir ;
       if (sorttable. v < sorttable. t) {</pre>
         sorttable.count = sorttable.count + 1 ;
         fill table = tblname, row = sorttable.__j + sorttable.__g ;
         sorttable. j = sorttable. j - sorttable. g;
       } else { sorttable. f = 0 ; }
     sorttable.count = sorttable.count + 1;
     setvars table = tblname, row = sorttable. n ;
             table = tblname, row = sorttable. j + sorttable. g;
     sorttable. i = sorttable. i + 1;
   sorttable. g = floor(sorttable. g / 3);
 shrink table = tblname ;
```


- Functions (and unary/binary operators) return a number
- \longrightarrow unary operator: (-x)
- \implies binary operators: x+y, x-y, x*y, x/y, x^y (power)
- relational operators: x==y, x<=y, x>=y, x<y, x>y, x<>y
- logical operators: lexpr && lexpr (and), lexpr || lexpr (or)
- \Rightarrow abs(x), sqrt(x), exp(x), log(x), log(x)
- $\sin(x)$, $\cos(x)$, $\tan(x)$, $a\sin(x)$, $a\cos(x)$, $a\tan(x)$,
- $\sinh(x)$, $\cosh(x)$, $\tanh(x)$
- $ightharpoonup \operatorname{erf}(x)$, $\operatorname{erfc}(x)$ (error functions)
- round(x), floor(x), ceil(x), frac(x) (integral and fractional parts)
- ranf(), gauss(), tgauss(x) (random number generators)

- Functions (and unary/binary operators) return a number
- unary operator: (-x)
- binary operators: x+y, x-y, x*y, x/y, x^y (power)
- relational exit, quit, stop stop execution
- logical op call runs (load) scripts, return returns from current script
- \Rightarrow abs(x), sq \Rightarrow exec expands macros in current script (defined with macro)
- \Rightarrow sin(x), co \Rightarrow system runs shell commands (platform & shell specific)
- $\sinh(x)$, c value, show, help query global environment
- $\operatorname{erf}(x)$, er option , title , set setup global $\operatorname{environment}$
- round(x), beam setups physics environment
- ranf(), gal use, select setup specific environment (commands, modules)
 - assign sets output file for echoing
 - print, printf print raw text and formated text
 - copyfile, renamefile, removefile portable files manipulation
 - plot, setplot, resplot plotting facilities

Functions (and unary/binary operators) return a number \longrightarrow unary operator: (-x)binary operators: x+y, x-y, x*y, x/y, x^y (power) relational exit, quit, stop stop execution logical op call runs (load) scripts, return returns from current script \Rightarrow abs(x), sq \Rightarrow exec expands macros in current script (defined with macro) $\sinh(x)$, co \sinh system runs shell commands (platform & shell specific) sequence : sequence \implies sinh(x), c \implies value, s marker: marker \rightarrow erf(x), er \rightarrow option, drift : drift round(x), beam se sbend, rbend, quadrupole, sextupole, octupole, multipole, solenoid, ranf(), ga use, sel dipedge, rfmultipole: magnets assign s rfcavity, twcavity, crabcavity, rfmultipole: cavities print . kicker, hkicker, vkicker, tkicker: correctors copyfile ecollimator, rcollimator: collimators* plot, se monitor, hmonitor, vmonitor, blmonitor: monitors instrument, placeholder: placeholders **srotation**, **yrotation**: rotations elseparator, beambeam, matrix: others

SURVEY: 3D geometrical tracking (global frame, design orbit)

- SURVEY: 3D geometrical tracking (global frame, design orbit)
- TRACK: 6D particles tracking (symplectic)
 - → thin lens tracking (D-K-D), 6D closed orbit.
 - can track thick elements: dipole, quadrupole and solenoid.
 NEW
 - can track thousand particles (no hard limits, OMP parallelization).
 NEW
 - ⇒ synchrotron radiation (*distribution and quantum*).
 - can (re-)evaluates time dependent expressions every turn (freq=F0/N).

- SURVEY: 3D geometrical tracking (global frame, design orbit)
- TRACK: 6D particles tracking (symplectic)
 - thin lens tracking (D-K-D), 6D closed orbit.
 - can track thick elements: dipole, quadrupole and solenoid.
 NEW
 - can track thousand particles (no hard limits, OMP parallelization).
 NEW
 - ⇒ synchrotron radiation (distribution and quantum).
 - can (re-)evaluates time dependent expressions every turn (freq=F0/N).
- TWISS: 5D optical tracking (almost symplectic) up to 2nd order (i.e. X,R,T)
 - → thick lens tracking, optical functions (Courant-Snyder), 4D-5D closed orbit, beta blocks.
 - can twiss at any positions inside element.
 NEW
 - → synchrotron radiation (*distribution*).
 NEW

- SURVEY: 3D geometrical tracking (global frame, design orbit)
- TRACK: 6D particles tracking (symplectic)
 - thin lens tracking (D-K-D), 6D closed orbit.
 - can track thick elements: dipole, quadrupole and solenoid.
 NEW
 - can track thousand particles (no hard limits, OMP parallelization).
 NEW
 - ⇒ synchrotron radiation (distribution and quantum).
 - can (re-)evaluates time dependent expressions every turn (freq=F0/N).
- TWISS: 5D optical tracking (almost symplectic) up to 2nd order (i.e. X,R,T)
 - → thick lens tracking, optical functions (Courant-Snyder), 4D-5D closed orbit, beta blocks.
 - → can twiss at any positions inside element.
 NEW
 - ⇒ synchrotron radiation (*distribution*).
- MATCH: global non-linear optimiser
 - handle multiple sequences and beta blocks.
 - local/global constraints, ranges, equality or inequality.
 - → direct (run TWISS) or indirect (run macro, PTC_TWISS).
 - can match at any positions inside elements.

NEW

NEW

- SURVEY: 3D geometrical tracking (global frame, design orbit)
- TRACK: 6D particles tracking (symplectic)
 - thin lens tracking (D-K-D), 6D closed orbit.
 - can track thick elements: dipole, quadrupole and solenoid.
 - can track thousand particles (no hard limits, OMP parallelization).
 NEW
 - ⇒ synchrotron radiation (*distribution and quantum*).
 - can (re-)evaluates time dependent expressions every turn (freq=F0/N).
- TWISS: 5D optical tracking (almost symplectic) up to 2nd order (i.e. X,R,T)
 - → thick lens tracking, optical functions (Courant-Snyder), 4D-5D closed orbit, beta blocks.
 - can twiss at any positions inside elemen
 - ⇒ synchrotron radiation (*distribution*).
- MATCH: global non-linear optimiser
 - handle multiple sequences and beta blo
 - local/global constraints, ranges, equality
 - direct (run TWISS) or indirect (run macrd
 - can match at any positions inside eleme

```
match use_macro, ...;
... vary statements ...
macro1: macro = { ... madx statements ... }
constraint expr= "lhs1 < | = | > rhs1";
constraint expr= "lhs2 < | = | > rhs2";
... constraint statements ...
macro2: macro = { ... madx statements ... }
... constraint statements ...
macro3: macro = { ... madx statements ... }
... constraint statements ...
... methods statements ...
endmatch;
```


Makethin improvement

Makethin improvement

- Convert thick sequence into thin sequence (in place).
 - new module (2015-) in C++ by H. Burkhardt.
 - ➡ generalise TEAPOT symplectic integration scheme for n>4 slices to minimise beta beating using better interpolation (i.e. than SIMPLE) of thick quadrupole.
 - can keep dipole, quadrupole and solenoid thick.

Makethin improvement

- Convert thick sequence into thin sequence (in place).
 - new module (2015-) in C++ by H. Burkhardt.
 - ➡ generalise TEAPOT symplectic integration scheme for n>4 slices to minimise beta beating using better interpolation (i.e. than SIMPLE) of thick quadrupole.
 - can keep dipole, quadrupole and solenoid thick.

thick=	false			true		
slice=	1	2	3	1	2	3
	Back. C	ompat. +	RBARC	Optics		
makedipedge=false	l .		44		*	**
makedipedge=true	4-0	SHA	SHHD	(X)	XXX	XXXX
	Thin Tracking			Thick Tracking		
thick dipedge x kill fringe fields drift multipole						

- Fixed and improved in Twiss, Track and Emit modules.
 - → originally implemented in MAD8 for high-energy e+e- collider (LEP) at CERN.

- Fixed and improved in Twiss, Track and Emit modules.
 - → originally implemented in MAD8 for high-energy e+e- collider (LEP) at CERN.
- 4 levels of activation
 - → no radiation, corresponding to the usual Hamiltonian dynamics.
 - deterministic radiation, all particles radiate as a single particle on the closed-orbit.
 - deterministic radiation, with full dependence on canonical coordinates to generate natural radiation damping (Track and Emit only).
 Preferred method for dynamic aperture calculations in high-energy lepton rings.
 - Individual quantum excitation with stochastic photon emissions, provides particle distributions and equilibrium emittances (Track only).

- Fixed and improved in Twiss, Track and Emit modules.
 - → originally implemented in MAD8 for high-energy e+e- collider (LEP) at CERN.
- 4 levels of activation
 - → no radiation, corresponding to the usual Hamiltonian dynamics.
 - deterministic radiation, all particles radiate as a single particle on the closed-orbit.
 - deterministic radiation, with full dependence on canonical coordinates to generate natural radiation damping (Track and Emit only).
 Preferred method for dynamic aperture calculations in high-energy lepton rings.
 - Individual quantum excitation with stochastic photon emissions, provides particle distributions and equilibrium emittances (Track only).

Frozen space charge

Frozen space charge

- The code has undergo a complete refactoring
 - new separate Fortran module.
 - simplify support and extension without changing the model.
 - could become a new separate MAD-X command in the future.

Frozen space charge

- The code has undergo a complete refactoring
 - new separate Fortran module.
 - simplify support and extension without changing the model.
 - could become a new separate MAD-X command in the future.

Emittance growth and beam intensity as computed with MAD-X (adaptive mode). Experimental data are shown with dashed lines.

Linear coupling review

Linear coupling review

- Review triggered by negative beta functions in the presence of strong coupling
 - occurred for a single seed leading to strong misalignment in HL-LHC studies.
 - ➡ tried two alternate implementations without success (Sagan & Rubin, Talman).
 - → added the flip mode to the implementation (fixed the problem).
 - added a couple missing checks to validate assumptions.
 - review the theory and the implementation from scratch (lost knowledge).
 - review fixed typos in the manual and restored the understanding of the method.

Linear coupling review

- Review triggered by negative beta functions in the presence of strong coupling
 - occurred for a single seed leading to strong misalignment in HL-LHC studies.
 - ➡ tried two alternate implementations without success (Sagan & Rubin, Talman).
 - added the flip mode to the implementation (fixed the problem).
 - added a couple missing checks to validate assumptions.
 - review the theory and the implementation from scratch (lost knowledge).
 - review fixed typos in the manual and restored the understanding of the method.

Negative (blue) beta functions in HL-LHC studies, right after the skew quadrupole starting from IP (left). Coupling is so strong that optics is not stable. Fixed in recent released (green).

$$\vec{X}(s_2) = M\vec{X}(s_1),$$

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = R_M \begin{pmatrix} E & 0 \\ 0 & F \end{pmatrix} R_M^{-1} = R_M M_{\perp} R_M^{-1}.$$

$$M = \begin{bmatrix} \vec{X}(s_2) = M\vec{X}(s_1), \\ \text{eig}(M) = \text{eig}(M^{-1}) = \{(\lambda_i, \lambda_i^{-1}), \ i = 1..2\}, \\ \text{eig}(M + \bar{M}) = \{\Lambda_i = \lambda_i + \lambda_i^{-1}, \ i = 1..2\}, \\ \text{det}(M + \bar{M} - \Lambda I) = (\text{tr } A - \Lambda)(\text{tr } D - \Lambda) - |C + \bar{B}| = 0, \\ \Lambda_{A,D} = \frac{1}{2}(\text{tr } A + \text{tr } D) \pm \frac{1}{2}\operatorname{sign}(\text{tr } A - \text{tr } D)\sqrt{\Delta}. \end{bmatrix}$$
 Eigenmodes

$$\overrightarrow{X}(s_2) = M\overrightarrow{X}(s_1),$$

$$eig(M) = eig(M^{-1}) = \{(\lambda_i, \lambda_i^{-1}), \ i = 1..2\},$$

$$eig(M + \overline{M}) = \{\Lambda_i = \lambda_i + \lambda_i^{-1}, \ i = 1..2\},$$

$$(\operatorname{tr} A - \Lambda_A)I \quad B + \overline{C} \quad (\operatorname{tr} D - \Lambda_A)I) \begin{pmatrix} X \\ R_A X \end{pmatrix} = 0,$$

$$\left((\operatorname{tr} A - \Lambda_D)I \quad B + \overline{C} \\ C + \overline{B} \quad (\operatorname{tr} D - \Lambda_D)I \end{pmatrix} \begin{pmatrix} R_D Y \\ Y \end{pmatrix} = 0,$$

$$R = -\left(\frac{1}{2}(\operatorname{tr} A - \operatorname{tr} D) + \frac{1}{2}\operatorname{sign}(\operatorname{tr} A - \operatorname{tr} D)\sqrt{\Delta}\right)^{-1}(C + \overline{B}),$$
 with $R_A = -\overline{R}_D = R$.

$$\begin{split} M = & \begin{array}{c} \vec{X}(s_2) = M\vec{X}(s_1), \\ & \text{eig}(M) = \text{eig}(M^{-1}) = \{(\lambda_i, \lambda_i^{-1}), \ i = 1..2\}, \\ & \text{eig}(M + \bar{M}) = \{\Lambda_i = \lambda_i + \lambda_i^{-1}, \ i = 1..2\}, \\ & \text{det} \\ & \begin{pmatrix} (\text{tr} \, A - \Lambda_A)I & B + \bar{C} \\ C + \bar{B} & (\text{tr} \, D - \Lambda_A)I \end{pmatrix} \begin{pmatrix} X \\ R_A X \end{pmatrix} = 0, \\ & \begin{pmatrix} (\text{tr} \, A - \Lambda_D)I & B + \bar{C} \\ C + \bar{B} & (\text{tr} \, D - \Lambda_D)I \end{pmatrix} \begin{pmatrix} R_D Y \\ Y \end{pmatrix} = 0, \\ & R = - \\ & R = - \\ & R = - \begin{pmatrix} M_\perp = R_M^{-1} M R_M = g^2 \bar{R}_M M R_M \\ & = g^2 \begin{pmatrix} I & -\bar{R} \\ R & I \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I & \bar{R} \\ -R & I \end{pmatrix} = \begin{pmatrix} E & 0 \\ 0 & F \end{pmatrix}, \\ & E = g^2 (A - \bar{R}C - (BR - \bar{R}DR)) = A - \bar{R}C = A - BR, \\ & F = g^2 (D + RB + (C\bar{R} + RA\bar{R})) = D + RB = D + C\bar{R}. \end{split}$$

$$\begin{split} \overrightarrow{X}(s_2) &= M\overrightarrow{X}(s_1), \\ & \operatorname{cig}(M) = \operatorname{cig}(M^{-1}) = \{(\lambda_i, \lambda_i^{-1}), \ i = 1..2\}, \\ & \operatorname{eig}(M + \overline{M}) = \{\Lambda_i = \lambda_i + \lambda_i^{-1}, \ i = 1..2\}, \\ & \operatorname{det} \\ & \begin{pmatrix} (\operatorname{tr} A - \Lambda_A)I & B + \overline{C} \\ C + \overline{B} & (\operatorname{tr} D - \Lambda_A)I \end{pmatrix} \begin{pmatrix} X \\ R_A X \end{pmatrix} = 0, \\ & \begin{pmatrix} (\operatorname{tr} A - \Lambda_D)I & B + C \\ C + \overline{B} & (\operatorname{tr} D - \Lambda_D)I \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = 0, \\ & R = - \\ & R = -$$

$$M_{2} = M_{12}M_{1}M_{12}^{-1} = M_{12} \left(R_{M_{1}}M_{1\perp}R_{M_{1}}^{-1} \right) M_{12}^{-1},$$

$$M_{2\perp} = R_{M_{2}}^{-1}M_{2}R_{M_{2}} = \left(R_{M_{2}}^{-1}M_{12}R_{M_{1}} \right) M_{1\perp} \left(R_{M_{1}}^{-1}M_{12}^{-1}R_{M_{2}} \right)$$

$$= W_{12}M_{1\perp}W_{12}^{-1}.$$

 Restore the derivation of the equations, provide intermediate validity checks and more stable formula (see the links in refs for details).

$$M_{2} = M_{12}M_{1}M_{12}^{-1} = M_{12} \left(R_{M_{1}}M_{1\perp}R_{M_{1}}^{-1} \right) M_{12}^{-1},$$

$$M_{2\perp} = R_{M_{2}}^{-1}M_{2}R_{M_{2}} = \left(R_{M_{2}}^{-1}M_{12}R_{M_{1}} \right) M_{1\perp} \left(R_{M_{1}}^{-1}M_{12}^{-1}R_{M_{2}} \right)$$

$$R_{M_{2}}W_{12} = M_{12}R_{M_{1}},$$

$$g_{2} \begin{pmatrix} I & \bar{R}_{2} \\ -R_{2} & I \end{pmatrix} \begin{pmatrix} E_{12} & 0 \\ 0 & F_{12} \end{pmatrix} = g_{1} \begin{pmatrix} A_{12} & B_{12} \\ C_{12} & D_{12} \end{pmatrix} \begin{pmatrix} I & \bar{R}_{1} \\ -R_{1} & I \end{pmatrix},$$

$$g_{2} \begin{pmatrix} I & \bar{R}_{2} \\ -R_{2} & I \end{pmatrix} \begin{pmatrix} 0 & E_{12} \\ F_{12} & 0 \end{pmatrix} = g_{1} \begin{pmatrix} A_{12} & B_{12} \\ C_{12} & D_{12} \end{pmatrix} \begin{pmatrix} I & \bar{R}_{1} \\ -R_{1} & I \end{pmatrix}.$$

Normal form

$$M_2 = M_{12} M_1 M_{12}^{-1} = M_{12} \left(R_{M_1} M_{1\perp} R_{M_1}^{-1} \right) M_{12}^{-1}, \\ M_{2\perp} = R_{M_2}^{-1} M_2 R_{M_2} = \left(R_{M_2}^{-1} M_{12} R_{M_1} \right) M_{1\perp} \left(R_{M_1}^{-1} M_{12}^{-1} R_{M_2} \right) \\ R_{M_2} W_{12} = M_{12} R_{M_1}, \\ g_2 \left(\begin{array}{ccc} I & \bar{R}_2 \\ -R_2 & I \end{array} \right) \left(\begin{array}{ccc} E_{12} & 0 \\ 0 & F_{12} \end{array} \right) = g_1 \left(\begin{array}{ccc} A_{12} & B_{12} \\ C_{12} & D_{12} \end{array} \right) \left(\begin{array}{ccc} I & \bar{R}_1 \\ -R_1 & I \end{array} \right), \\ g_2 \left[\begin{array}{ccc} E_{12} = & g_{12} (A_{12} - B_{12} R_1) \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) \end{array} \right] \quad E_{12} = & g_{12} (B_{12} + A_{12} \bar{R}_1) \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) \\ F_{12} = & g_{12} (C_{12} - D_{12} R_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{12} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{13} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{14} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = & g_{12} (D_{12} + C_{12} \bar{R}_1) E_{12}^{-1} \\ F_{15} = &$$

$$\begin{array}{|c|c|c|c|c|} \hline M_2 = M_{12} M_1 M_{12}^{-1} = M_{12} \left(R_{M_1} M_{1\perp} R_{M_1}^{-1} \right) M_{12}^{-1}, \\ M_{2\perp} = R_{M_2}^{-1} M_2 R_{M_2} = \left(R_{M_2}^{-1} M_{12} R_{M_1} \right) M_{1\perp} \left(R_{M_1}^{-1} M_{12}^{-1} R_{M_2} \right) \\ \hline R_{M_2} W_{12} = M_{12} R_{M_1}, \\ g_2 \left(\begin{matrix} I & \bar{R}_2 \\ -R_2 & I \end{matrix} \right) \left(\begin{matrix} E_{12} & 0 \\ 0 & F_{12} \end{matrix} \right) = g_1 \left(\begin{matrix} A_{12} & B_{12} \\ C_{12} & D_{12} \end{matrix} \right) \left(\begin{matrix} I & \bar{R}_1 \\ -R_1 & I \end{matrix} \right), \\ g_2 \left[\begin{matrix} E_{12} = g_{12} (A_{12} - B_{12} R_1) \\ F_{12} = g_{12} (D_{12} + C_{12} \bar{R}_1) \end{matrix} \right] & E_{12} = g_{12} (B_{12} + A_{12} \bar{R}_1) \\ F_{12} = g_{12} (D_{12} + C_{12} \bar{R}_1) \end{matrix} \\ F_{12} = g_{12} (C_{12} - D_{12} R_1) \\ \hline F_{12} = g_{12} (C_{12} - D_{12} R_1) \end{matrix} \\ F_{12} = F_{12} F_1 \bar{F}_{12} / |E_{12}| \\ F_{2} = F_{12} F_1 \bar{F}_{12} / |F_{12}| \\ F_{2} = F_{12} E_1 \bar{F}_{12} / |F_{12}| \\ \hline R_2 = - (C_{12} - D_{12} R_1) \frac{\bar{E}_{12}}{|E_{12}|} \\ \hline R_2 = - (D_{12} + C_{12} \bar{R}_1) \frac{\bar{E}_{12}}{|E_{12}|} \\ \hline \end{array}$$
 Solution

$$\begin{array}{c} M_2 = M_{12} M_1 M_{12}^{-1} = M_{12} \left(R_{M_1} M_{1\perp} R_{M_1}^{-1} \right) M_{12}^{-1}, \\ M_{2\perp} = R_{M_2}^{-1} M_2 R_{M_2} = \left(R_{M_2}^{-1} M_{12} R_{M_1} \right) M_{1\perp} \left(R_{M_1}^{-1} M_{12}^{-1} R_{M_2} \right) \\ \hline R_{M_2} W_{12} = M_{12} R_{M_1}, \\ g_2 \left(\begin{array}{c} I \ \bar{R}_2 \\ -R_2 \ I \end{array} \right) \left(\begin{array}{c} E_{12} \ 0 \\ 0 \ F_{12} \end{array} \right) = g_1 \left(\begin{array}{c} A_{12} \ B_{12} \\ C_{12} \ D_{12} \end{array} \right) \left(\begin{array}{c} I \ \bar{R}_1 \\ -R_1 \ I \end{array} \right), \\ g_2 \left[\begin{array}{c} E_{12} = g_{12} (A_{12} - B_{12} R_1) \\ F_{12} = g_{12} (D_{12} + C_{12} \bar{R}_1) \\ F_{12} = g_{12} (D_{12} + C_{12} \bar{R}_1) \end{array} \right] \left[\begin{array}{c} E_{12} = g_{12} (B_{12} + A_{12} \bar{R}_1) \\ F_{12} = g_{12} (D_{12} + C_{12} \bar{R}_1) \\ F_{12} = g_{12} (C_{12} - D_{12} R_1) \\ \end{array} \right] \\ F_{12} = g_{12} \left(\begin{array}{c} E_{12} + E_{12} \bar{R}_1 \\ F_{12} = g_{12} (C_{12} - D_{12} R_1) \\ \end{array} \right) \\ F_{12} = g_{12} \left(\begin{array}{c} E_{12} + E_{12} \bar{R}_1 \\ F_{12} = g_{12} (C_{12} - D_{12} R_1) \\ \end{array} \right) \\ F_{12} = g_{12} \left(\begin{array}{c} E_{12} + E_{12} \bar{R}_1 \\ F_{12} = \left(\begin{array}{c} E_{12} - E_{12} \bar{R}_1 \\ F_{12} - \left(\begin{array}{c} E_{12} - E_{12} \bar{R}_1 \\ -C_{12} - C_{12} \end{array} \right) \right) \right) \\ F_{12} = g_{12} \left(\begin{array}{c} E_{12} - E_{12} \bar{R}_1 \\ F_{12} - \left(\begin{array}{c} E_{12} - E_{12} \bar{R}_1 \\ F_{12} - C_{12} - C_{12} \\ -C_{12} - C_{12} - C_{12} - C_{12} \right) \right) \\ F_{12} = g_{12} \left(\begin{array}{c} E_{12} - E_{12} \bar{R}_1 \\ F_{12} - E_{12} \bar{R}_1 \\ F_{12} - F_{12} - \left(\begin{array}{c} E_{12} - E_{12} \bar{R}_1 \\ -C_{12} - C_{12} - C_{12} - C_{12} \\ -C_{12} - C_{12} - C_{12} - C_{12} \\ -C_{12} - C_{12} \\ -C_{12} - C_{12} - C_{12} \\ -C_{12} - C_{12} - C_{12}$$

- Patches added to SURVEY, TWISS and TRACK
 - ⇒ s-rotation, x-rotation, y-rotation and translation elements.
 - used to change the reference frame.
 - used to misalign magnets in HL-LHC studies.
 - used to keep "flat" non-flat beam lines (gantry).

- Patches added to SURVEY, TWISS and TRACK
 - s-rotation, x-rotation, y-rotation and translation elements.
 - used to change the reference frame.
 - used to misalign magnets in HL-LHC studies.
 - → used to keep "flat" non-flat beam lines (gantry).

x-rotation tracking map

$$x^{f} = x^{i} + \frac{yp_{x}^{i} \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_{x}^{f} = p_{x}^{i}$$

$$y^{f} = \frac{y^{i}}{\cos \theta - p_{y}^{i} \tan \theta / p_{z}^{i}}$$

$$p_{y}^{f} = p_{y}^{i} \cos \theta + p_{z}^{i} \sin \theta$$

$$t^{f} = t_{i} - \frac{y^{i}(1/\beta_{0} + p_{t}) \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_{z} = \sqrt{1 + 2p_{t}/\beta_{0} + p_{t}^{2} - p_{x}^{2} - p_{y}^{2}}$$

$$p_{t} = (E - E_{0})/P_{0}c$$

- Patches added to SURVEY, TWISS and TRACK
 - ⇒ s-rotation, x-rotation, y-rotation and translation elements.
 - used to change the reference frame.
 - used to misalign magnets in HL-LHC studies.
 - used to keep "flat" non-flat beam lines (gantry).
- SBEND updated in SURVEY, TWISS and TRACK
 - → angle can be different from k₀l integrated strength.
 - change horizontal field curvature.
 - treated as an extra field error not removed by USE.

x-rotation tracking map

$$x^{f} = x^{i} + \frac{yp_{x}^{i} \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_{x}^{f} = p_{x}^{i}$$

$$y^{f} = \frac{y^{i}}{\cos \theta - p_{y}^{i} \tan \theta/p_{z}^{i}}$$

$$p_{y}^{f} = p_{y}^{i} \cos \theta + p_{z}^{i} \sin \theta$$

$$t^{f} = t_{i} - \frac{y^{i}(1/\beta_{0} + p_{t}) \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_{z} = \sqrt{1 + 2p_{t}/\beta_{0} + p_{t}^{2} - p_{x}^{2} - p_{x}^{2}}$$

$$p_z = \sqrt{1 + 2p_t/\beta_0 + p_t^2 - p_x^2 - p_y^2}$$
$$p_t = (E - E_0)/P_0c$$

- Patches added to SURVEY, TWISS and TRACK
 - s-rotation, x-rotation, y-rotation and translation elements.
 - used to change the reference frame.
 - used to misalign magnets in HL-LHC studies.
 - → used to keep "flat" non-flat beam lines (gantry).
- SBEND updated in SURVEY, TWISS and TRACK
 - → angle can be different from k₀l integrated strength.
 - change horizontal field curvature.
 - treated as an extra field error not removed by USE.
- SELECT updated and used by TWISS and MATCH
 - extended with INTERPOLATE to specify points of interpolation (output) within elements.
 - matching constraints can refer to arbitrary positions.
 - → still under testing (will be in end-of-the-year release)

x-rotation tracking map

$$x^{f} = x^{i} + \frac{yp_{x}^{i} \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_{x}^{f} = p_{x}^{i}$$

$$y^{f} = \frac{y^{i}}{\cos \theta - p_{y}^{i} \tan \theta / p_{z}^{i}}$$

$$p_{y}^{f} = p_{y}^{i} \cos \theta + p_{z}^{i} \sin \theta$$

$$t^{f} = t_{i} - \frac{y^{i}(1/\beta_{0} + p_{t}) \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_z = \sqrt{1 + 2p_t/\beta_0 + p_t^2 - p_x^2 - p_y^2}$$
$$p_t = (E - E_0)/P_0c$$

- Patches added to SURVEY, TWISS and TRACK
 - ⇒ s-rotation, x-rotation, y-rotation and translation elements.
 - used to change the reference frame.
 - used to misalign magnets in HL-LHC studies.
 - used to keep "flat" non-flat beam lines (gantry).
- SBEND updated in SURVEY, TWISS and TRACK
 - → angle can be different from k₀l integrated strength.
 - change horizontal field curvature.
 - treated as an extra field error not removed by USE.
- SELECT updated and used by TWISS and MATCH

x-rotation tracking map

$$x^{f} = x^{i} + \frac{yp_{x}^{i} \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_{x}^{f} = p_{x}^{i}$$

$$y^{f} = \frac{y^{i}}{\cos \theta - p_{y}^{i} \tan \theta/p_{z}^{i}}$$

$$p_{y}^{f} = p_{y}^{i} \cos \theta + p_{z}^{i} \sin \theta$$

$$t^{f} = t_{i} - \frac{y^{i}(1/\beta_{0} + p_{t}) \tan \theta}{p_{z}^{i} - p_{y}^{i} \tan \theta}$$

$$p_z = \sqrt{1 + 2p_t/\beta_0 + p_t^2 - p_x^2 - p_y^2}$$
$$p_t = (E - E_0)/P_0c$$

- extended with INTERPOLATE to specify points of
- → matching constraints ca MATCH, SEQUENCE=seq;
- still under testing (will b

interpolation (output) w SELECT, FLAG=INTERPOLATE, RANGE=mq1, AT={0.5, 1};

VARY, NAME=k1; # vary strength of quadrupole mq1 CONSTRAINT, RANGE=mq1, IINDEX=0, BETX=5;

LMDIF; # match betx at centre of mq1 varying k1 ENDMATCH;

MAD-X PTC extensions

MAD-X PTC extensions

- Interface between MAD-X and PTC/FPP embedded library is constantly improved.
 - → follow-up of new releases of PTC/FPP from E. Forest for update in MAD-X.
 - ⇒ synchrotron radiation effects connected to MAD-X, PTC_TWISS outputs damping times and equilibrium emittances now.
 - → optimise the sector-bend maps with the exact Hamiltonian by automatic detection of maximum multipole order required, speed-up PTC_TWISS on LHC by factor x3.
 - added RECLOSS to record lost particles in table by PTC_TRACK.
 - added 6D closed orbit search with TOTALPATH, and correctly calculates the dependence of the beam momentum on RF frequency.
 - → added NORMAL and TRACKRDTS options to PTC_TWISS to output the three tunes, dispersions, eigenvectors, RDTs (generating functions), Hamiltonian, and one-turn map to the new tables NONLIN and TWISSRDT and hence become available for MATCHing.

CERN

MAD-X PTC extensions

- Interface between MAD-X and PTC/FPP embedded library is constantly improved.
 - → follow-up of new releases of PTC/FPP from E. Forest for update in MAD-X.
 - ⇒ synchrotron radiation effects connected to MAD-X, PTC_TWISS outputs damping times and equilibrium emittances now.
 - → optimise the sector-bend maps with the exact Hamiltonian by automatic detection of maximum multipole order required, speed-up PTC_TWISS on LHC by factor x3.
 - added RECLOSS to record lost particles in table by PTC_TRACK.
 - added 6D closed orbit search with TOTALPATH, and correctly calculates the dependence of the beam momentum on RF frequency.
 - added NORMAL and TRACKRDTS options to PTC_TWISS to output the three tunes, dispersions, eigenvectors, RDTs (generating functions), Hamiltonian, and one-turn map to the new tables NONLIN and TWISSRDT and hence become available for MATCHing.

Acknowledgements

Many thanks to

MAD-X team: A. Latina, T. Persson P. Skowronski, I. Shreyber, G. Roy.

MAD-X contributors: H. Burkhardt, R. De Maria, F. Schmidt, T. Gläßle, and many others...

PTC/FPP author: E. Forest.

CERN BE/ABP: M. Giovannozzi, G. Arduini, P. Collier.

And the story continue,

And the story continue,

MAD8, MAD9, MAD-X, ... MAD-NG

And the story continue,

MAD8, MAD9, MAD-X, ... MAD-NG

alpha release foreseen by end of 2018 for internal use at CERN beta releases will follow during the long shutdown 2 (2019-20)

And the story continue,

MAD8, MAD9, MAD-X, ... MAD-NG

alpha release foreseen by end of 2018 for internal use at CERN beta releases will follow during the long shutdown 2 (2019-20)

MAD Next Generation is coming soon!

Extra slides

- Developed by E. Forest (KEK) since the 90's (+2 books)
 - continuously updated in MAD-X since 2015 (following Etienne's releases), new connection from P. Skowronsky.
 - advanced Fortran 90 Library for beam dynamics, require to develop a Fortran program for your studies.

- Developed by E. Forest (KEK) since the 90's (+2 books)
 - continuously updated in MAD-X since 2015 (following Etienne's releases), new connection from P. Skowronsky.
 - advanced Fortran 90 Library for beam dynamics, require to develop a Fortran program for your studies.
- Principle: track high order maps using TPSA from Berz TPSA = Truncated Power Series Algebra.
 - provide true 3D geometry for lattice design (i.e. patches).
 - provide true 6D physics for beam dynamics (small machines), icase = 4, 5, 56, 6 (resp. 4D, 5D dp, 6D wo-cav, 6D w-cav), model = 1, 2, 3 (resp. D-K-D, M-K-M, D-M-K-M), method = 2, 4, 6 (integrator order, Forest & Ruth, Yoshida scheme).
 - provide high order normal forms analysis (ptc_normal, ptc_twiss).
 - slow because of its complexity and underlying toolbox (FPP, TPSA).

- Developed by E. Forest (KEK) since the 90's (+2 books)
 - continuously updated in MAD-X since 2015 (following Etienne's releases), new connection from P. Skowronsky.
 - advanced Fortran 90 Library for beam dynamics, require to develop a Fortran program for your studies.
- Principle: track high order maps using TPSA from Berz TPSA = Truncated Power Series Algebra.
 - provide true 3D geometry for lattice design (i.e. patches).
 - provide true 6D physics for beam dynamics (small machines), icase = 4, 5, 56, 6 (resp. 4D, 5D dp, 6D wo-cav, 6D w-cav), model = 1, 2, 3 (resp. D-K-D, M-K-M, D-M-K-M), method = 2, 4, 6 (integrator order, Forest & Ruth, Yoshida scheme).
 - provide high order normal forms analysis (ptc_normal, ptc_twiss).
 - ⇒ slow because of its complexity and underlying toolbox (FPP, TPSA).
- Give access to the full theory of the perturbation

- Developed by E. Forest (KEK) since the 90's (+2 books)
 - continuously updated in MAD-X since 2015 (following Etienne's releases), new connection from P. Skowronsky.
 - advanced Fortran 90 Library for beam dynamics, require to develop a Fortran program for your studies.
- Principle: track high order maps using TPSA from Berz TPSA = Truncated Power Series Algebra.
 - provide true 3D geometry for lattice design (i.e. patches).
 - provide true 6D physics for beam dynamics (small machines), icase = 4, 5, 56, 6 (resp. 4D, 5D dp, 6D wo-cav, 6D w-cav), model = 1, 2, 3 (resp. D-K-D, M-K-M, D-M-K-M), method = 2, 4, 6 (integrator order, Forest & Ruth, Yoshida scheme).
 - provide high order normal forms analysis (ptc_normal, ptc_twiss).
 - ➡ slow because of its complexity and underlying toolbox (FPP, TPSA).
- Give access to the full theory of the perturbation
- Integrated into MAD-X by F. Schmidt, E. Forest et al. in 2002 Directly available from MAD-X scripting language.
 Weak connection with only a subset of PTC...