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Thermionic Energy Converters as Alternative Electrical Generators

* Electricity generation in the United States (and elsewhere) is largely a
product of old technologies
* Large Scale (>MW): fuel drives turbines to generate current
* High fixed costs for development and deployment - efficiency at large scale
« Stagnant industrial progress
« Small scale (<~KW): lithium-ion batteries
* High materials cost limits price/stored-energy - not scalable

* Battery technologies reaching limits on efficiency and size

o V. V.S. Meir (2012)
« Thermionic Energy Converters (TECs) Electron Eoiiector

Emitter

* Boil off electrons at hot emitter and absorb A°°e'e’at'“9 Grid
at cold collector to generate current.
* Power is generated by difference in
electrochemical potential
« Compelling features of TECs

e High efficiencies approaching Carnot limit

e Scalable, robust, no moving parts

e Chall ing t dell C lex d ics! Power Suppl """"9“ ticField
allenging to modell Complex dynamics \ pply

|
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TEC constraints and design strategies

* Thermionic emission scales . 2 —(pw—A¢)/ kT
strongly with temperature JT — AT?e™ )/

* Child-Langmuir limifs peak current 2¢ V/3/2
for simple diode JCL = Eo\f 72
— Lower temperature leads to reduced current
— Biasing anode leads to lower efficiency
— Reducing gap leads to cooling difficulties

« Solution: Inter-gap grid applies voltage

EA

— Increase effective space-charge limit without biasing anode
— Grid is lossy. Its design and placement must be optimized
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Readlistic TEC efficiency includes loss channels

« Goal: Maximize current at collector, minimize losses
Pload — Pgrid

Pec + PR + PeW

« Many possible energy loss channels during operation

1. Kinefic losses - excess electron kinetic energy heats surface
Pec — Je (¢e + 2chre) — th (¢e + ZkBTC)
2. Grid losses - electron intercepted by accelerating gate
Pgrid — Vgrid (Jgrid + th)
3. Radiative losses - heat lost through emissivity
PR — €0gh (Te4 — Tél)

4. Resistive losses - losses in external circuit

L
PeW = 05 (IO—(Tem - jjenv)2 - /OeW(JeC T t‘]C)Q)

7’]:

For more on these models, see Voesch et al. Energy Technology, 5(12):2234-2243, (2017).
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Case Study: Grid transparency in relation to tfransverse dynamics

For simple device, tfransparency peaks as grid approaches collector,
even for different Te and Vg;ig

— Transverse kick from grid drives large oscillations
— Effects of fransverse motion mitigated closer to grid
— This effect is dimensional in nature, coupling motion in both planes
* Further reason why 3D dynamics are critical to optimizing
Conclusion: Minimize transverse dynamics for maximum efficiency
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Case Study: Grid losses shift ideal operating point

* Ignoring grid losses, efficiency scales consistent
across different voltages

* Infroducing grid/anode losses significantly
changes optimum
— Losses scale strongly with voltage

— But, grid voltage is important for
extracting ideal current

« Conclusion: Voltage must optimize total
current while minimizing energy-per-particle

— Similar to an |-V characteristic
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Improvements in modeling TECs using the Warp Code

* An open-source* plasma and accelerator simulation framework, developed
by Lawrence Berkeley No’riongl Laboratory, now a part of the Berkeley Lab
Accelerator Simulation Toolkit

— 2D, R-Z, and 3D geometries featuring electrostatic and electromagnetic
particle-in-cell

— Macro-particle, Multi-species, beam-envelope, transverse slice, emission
models

— Internal conductors, dielectrics, adaptive mesh refinement

— RadiaSoft efforts to support vacuum devices':
Enhance dielectric capabilities and extend solver to 3D and parallel use
Improve and validate emission models for novel cathodes

New geometry capabilities (mesh-refinement/“cut-cells” with internal boundaries)
« CAD input-output with support for standard files

* hitps://bitbucket.org/ * hitps://bit ket.or
berkelevylab/warp/src/master radiasoft/warp/src/master/

& http://blast.lbl.gov/blast- Additional developments for plasma
codes-warp/ dynamics at Exascale - R. Ryne 10/21
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Requirements: Emission in the space-charge limited regime

20 T

 TECs are most efficient when space-charge limited A N |
— Child-Langmuir is a cold limit 20|

— Approaching C-L at high temperature infroduces ~ao0}
some transient effects which quickly dampen

* Proper modeling of field enhancement, “Schottky
emission” is required due to applied field -lo0p

— Field enhancement is critical for advanced emitters |
— Warp implementation shows good agreement
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Requirements: Self-consistent dielectric interactions

« TEC grids may require dielectric supports or anchors for mechanical stability

— Isolated from an external circuit,
these supports may charge and |
deflect particles
* Improvements to Warp's capabilities
— Extended MultiGridDielectric solver
from 2D to 3D, parallelization |
— Installing dielectrics is now consistent — 4
with installing conductors - vamm
— New “Dielectric Particles” permit
charging of dielectric surfaces 5 —
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Challenges: Reducing computational expense

Most of a TEC is empty space

— Areas of interest are separated by vacuum region

— Transit time between theses areas of interest is
significant fraction of simulation

— Reflection and oscillatory dynamics infroduce
fransient behavior extends simulation duration

High aspect rafio limits solver speed
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A hybrid quasi-static approach to reduce computational demands

* Achieving steady-state drains significant resources (25-30% of total)
— Especially significant for 3D simulations with small grid features and small fime-step
+ Use quasi-static solver: iterative emission converges to steady-state solution much faster!
— Successful strategy for gun/source studies with clearly defined geometries
— Efficient when current is evenly distributed, less efficient for sharp botftlenecks in current
— Still suffers from captured trajectory problem
* Planned improvements:
— Parallelization for future efforts with 3D optimization
— Resolve captured trajectories through smart “time-out”
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A cloud-based platform for VNDs via Sirepo

* Complex simulation tools require expertise and dedicated support for training and froubleshooting
* We are developing a 3D interface on RadiaSoft’s Sirepo platform - hitps://alpha.sirepo.com/#/warpvnd
* Automated Diagnostics - fields, particles, loss diagrams

* Choice of Solvers - multigrid, dielectric, quasi-static
* Automated Visualizations - 2D/3D rendering with VK js —
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Streamlining TEC designs in Sirepo
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Rapid design evaluation in Sirepo
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Future Interface Plans

* Generalized CAD support
— Leverage cut-cells/mesh refinement
— Vertex-based specification
— STLI/O

emitter
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* Launching of jobs at NERSC

— NEWT (NERSC Web Toolkit) for queue
management and authentication

— Shifter for container management

* Integrate and improve optimization
— Native Warp with Python hooks ——
- Standard Scikit + genetic algorithms — %
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Conclusions

* Thermionic energy converters present attractive solutions for
efficiency energy production

— Scalable from personal (KW) to community (MW) sources
— Novel emitter fechnologies promise higher efficiency
— Novel production techniques promise portability
« Opftimization of these devices requires careful simulation studies
— Proper measurement of steady-state system
— Rigorous efficiency model to capture discrete loss channels

* Using Warp, we are improving the capabilities to model and
optimize TECs and similar nano-electronics

— Enhanced dielectric solver for realistic structures
— Improved geometry-handling for complex emitters/grids
— New optimization tools for deploying Warp simulations

* These tools are being made available via a browser-based platform
for scientific computing, hitps://www.sirepo.com
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Additional material
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Anatomy of a TEC Simulation

Four Stages of Simulation
« Starfup: Begin emission

- Steady-state check: Validate current

Begin collection
 Wind-Down: End collection

Required statistics are device specific!
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External circuit model required to
maintain feedback

* Vioad Must bridge gap in work functions

* The load resistance must be chosen
based on the operating conditions

e If o is too small, low voltage

e If ¢ is fOO large, low current
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