

The FAST/IOTA Project at Fermilab

Alexander Valishev ICAP'18 October 20, 2018

Acknowledgments

- R.Andrews, D.Barak, V.Bocean, D.Broemmelsiek, A.Burov, K.Carlson, D.Crawford, A.Didenko, N.Eddy, D.Edstrom, J.Eldred, R.Espinoza, D.Franck, J.Jarvis, V.Kashikhin, R.Kellett, M.Kucera, V.Lebedev, J.Leibfritz, C.Jensen, W.Johnson, P.Li, M.McGee, S.Nagaitsev, L.Nobrega, M.Obrycki, H.Piekarz, E.Prebys, I.Rakhno, A.Romanov, J.Ruan, J.Santucci, V.Shiltsev, G.Stancari, A.Valishev, J.VanBogaert, A.Warner, S.Wesseln(FNAL)
- M.Andorff, S.Chattopadhyay, B.Freemire, P.Piot, S.Szustkowski (NIU)
- D.Shatilov (BINP)
- S.Antipov, N.Kuklev (Univ. Chicago)
- D.Abell, D.Bruhwiler, N.Cook, C.Hall, S.Webb (RadiaSoft)
- C.Mitchell (LBNL)
- R.Agustsson, A.Murokh, F.O'Shea (RadiaBeam)
- H.Baumgartner, R.Kishek, K.Ruisard (UMD)

Outline

- Motivation
- Overview of FAST/IOTA facility
- FAST/IOTA science
- Status and plans

Context: US HEP Community Plan based on 2014 P5 Report

	Intensity Frontier Accelerators	Hadron Colliders	e⁺e ⁻ Colliders
Current Effecte	PIP	LHC	
Current Enorts 0-10 yrs	PIP-II	HL-LHC	ILC
Next Steps 10-20 yrs	Multi-MW proton beam	Very high-energy <i>pp</i> collider	1 TeV class energy upgrade of ILC*
Further Future Goals 20+ yrs	Neutrino tory*	Higher-energy upgrade *dependent on how phys	Multi-TeV collider*

Key points on the Intensity Frontier HEP:

- "CP-violation sensitivity" ⇒ need 900 kt × MW × yrs
- [R12] build LBNF/DUNE 40 kt LAr detector
 - then 400kW⇒>50 years to get 900 kt × MW × yrs
- [R14] build PIP-II linac to get >1 MW
 - current plan 40 kt \times 1 MW \times 5 yrs = > 200 kt \times MW \times yrs
- [R23/26] accelerator R&D (facilities) toward multi-MW

- say, 40 kt × 2.5 MW × 7 yrs = remaining 700 kt × MW × yrs

Fermilab Accelerator Complex

Key Challenge – Beam Brightness → Particle Losses

Example: limits on the Fermilab Booster Protons Per Pulse (PPP)

Why Dedicated Facility?

- Need for experimental beam physics research <u>especially in</u> <u>circular accelerators</u>
 - Many challenges on the way to higher beam intensity and brightness
- Impossible to conduct R&D in main complex
 - Production machines must operate 24/7 for HEP users
 - Disruptive studies difficult if at all possible
- Dedicated R&D facility is an efficient way to conduct proof-ofprinciple experiments, train researchers

Fermilab Accelerator Science and Technology FAST facility – unique set of capabilities

IOTA ring (completed 2018) – the only accelerator R&D ring of its kind

- Protons or electrons
- Highly flexible, precise

SRF electron linac (completed 2017)

- Full ILC beam parameters
- World record accelerating gradient > 31.5MV/m
- Proton RFQ (future addition)
 - High current / high space-charge
- Together positioned to advance beam brightness and intensity

🔀 Fermilah

FAST Location

‡ Fermilab

Fermilab Accelerator Science and Technology FAST facility - Injectors

FAST SRF e- linac

Bunch charge	up to 2 nC	
Gun gradient	45 MV/m	
CC1 gradient	26 MV/m	
CC2 gradient	15 MV/m	
CM2 gradient	up to 31.5 MV/m	
Beam energy	150 (up to 300) MeV	
Bunch length	6-8 ps (rms)	
Pulse length	1 ms	
Bunch freq.	3 MHz	
Rep. rate	1 Hz (5 Hz)	

FAST proton injector

Particles	proton	
Kinetic Energy	2.5 MeV	
Momentum	69 MeV/c	
β	0.073	
RF Structure	325 MHz	
Beam current	10 mA	
Emittance	0.3 mm mrad	
Rep. rate	1 Hz	
Pulse length	1.5 us	
ΔQ_{sc} in IOTA	-0.5	

Center Piece of FAST – Integrable Optics Test Accelerator

IOTA Layout - Elements

IOTA Parameters

	Electrons	Protons
Nominal kinetic energy	150 MeV	2.5 MeV
Nominal intensity	1×10 ⁹	1×10 ¹¹
Circumference	40 m	
Bending dipole field	0.7 T	
Beam pipe aperture	50 mm dia.	
Betatron tune	3÷5	
Beam size (rms, x,y)	0.05 ÷ 0.5 mm	5 ÷ 15 mm
Transverse emittance r.m.s.	0.04 <i>μ</i> m	2 <i>µ</i> m
Synchrotron Radiation damping time	0.6s, 5×10 ⁶ turns	
Synchrotron tune	2÷5×10 ⁻⁴	
Bunch length, momentum spread	12 cm, 1.4×10 ⁻⁴	
Beam pipe vacuum	2÷4×10 ⁻¹⁰ Torr	
Beam lifetime	1÷10 hour	1÷10 min

Integrable Optics Test Accelerator – Unique R&D Machine

Adaptable

- Can operate with either electrons or protons
- Easily reconfigurable quick-change experimental equipment
- Significant flexibility

Accurate

- Precise control of the optics quality and stability
- Comprehensive set of precision instrumentation
- Set up for very high intensity operation (with protons)

Affordable

- Cost-effective solution, re-use existing parts whenever possible
- Mostly based on conventional technology (magnets, RF)
- Balance between low energy (low cost) and research potential

Summary of High-Intensity / High-Brightness Beam Physics Issues – FAST/IOTA Research

- Space-charge effects (Coulomb interaction inside the beam)
 - Particle losses
 - Beam quality (emittance) degradation
- Coherent instabilities
 - Very fast beam loss
 - Losses, emittance degradation
- Beam cooling
- Halo control
 - Halo formation
 - Halo collimation
- Beam diagnostics and control tools

IOTA Experiments

- 1. Nonlinear Integrable Optics Experimental demonstration of NIO lattice in a practical accelerator
- 2. Beam Cooling
 - **Optical Stochastic Cooling** Proof-of-principle demonstration
 - Electron Cooling Advanced techniques
- **3. Space Charge Compensation** Suppression of SC-related effects in high intensity circular accelerators
 - Nonlinear Integrable Optics
 - Electron lenses
 - Electron columns
 - Circular betatron modes
- **4. Quantum Physics** Localization of single electron wave function

Beam Focusing in Accelerators

$$H = c \left[m^{2}c^{2} + \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right)^{2} \right]^{\frac{1}{2}} \quad H' \approx \frac{p_{x}^{2} + p_{y}^{2}}{2} + \frac{K_{x}(s)x^{2}}{2} + \frac{K_{y}(s)y^{2}}{2} \\ \begin{cases} x'' + K_{x}(s)x = 0\\ y'' + K_{y}(s)y = 0 \end{cases}$$
$$K_{x,y}(s + C) = K_{x,y}(s)$$

- Equilibrium orbit closed circular trajectory of the particle with ideally matched energy
- Beam particles which have a spread in coordinates, momenta (both transverse x,y) and longitudinal (s)
 - Beam emittance volume in phase space
- Need to contain beam particles
 - Focusing with Lorentz force from magnets and accelerating structures
 - Longitudinal focusing synchrotron principle (Veksler 1944, McMillan 1945)

Strong Focusing - Limitations

- The key principle of everything we considered so far linear focusing $H' \approx \frac{p_x^2 + p_y^2}{2} + \frac{K_x(s)x^2}{2} + \frac{K_y(s)y^2}{2}$
- What about higher order terms?
 - Imperfections in magnet construction
 - Chromatic aberrations \propto quadrupole gradient $F \propto \frac{e}{(n_0 + \Lambda n)c} \frac{\partial B_y}{\partial x} x$
 - Coulomb self-interaction inside beams —
 - E/M interaction of beam with environment (image charges, etc) —
 - E/M interaction between beams
 - Intentionally introduced multipole magnets (e.g. sextupoles to correct chromaticity)
- All are aberrations to the initially decoupled system of two linear oscillators
 - Since the 60ies, thousands of papers on mitigation
 - Accelerator physics on crossroads of plasma, nonlinear dynamics, etc

Aberrations of Linear Focusing

 $x'' + K_x(s)x = S(s)x^2 + O(s)x^3 + \cdots$

- Nonlinearities result in dependence of oscillation frequency (tune) on amplitude
- Explicit time-dependence of multipole coefficients results in resonances
- Coupling between x and y further complicates the dynamics
- Ultimately, chaos and loss of stability
 - Beam quality degradation (blow-up)
 - Particle loss from accelerator
- We call this single particle stability or Dynamical Aperture

Collective Instabilities

- In addition to the single-particle chaos, the beam can become unstable as a whole if resonantly excited by external field or via self-interaction through environment
- These instabilities can be suppressed by
 - External damping system presently the most commonly used mechanism to keep the beam stable.
 - 2. Landau damping the beam's own "immune system" related to the spread of betatron oscillation frequencies. The larger the spread, the more stable the beam is against collective instabilities.
 - 1965 Priceton-Stanford CBX: First mention of an 8-pole magnet
 - Observed vertical resistive wall instability
 - With octupoles, increased beam current from ~5 to 500 mA
 - CERN PS: In 1959 had 10 octupoles; not used until 1968
 - At 10¹² protons/pulse observed (1st time) head-tail instability. Octupoles helped.
 - Once understood, chromaticity jump at transition was developed using sextupoles.
 - More instabilities were discovered; helped by octupoles, fb
 - LHC has 336 octupoles that run close to 500A to create 0.001 tune spread
 - FCC will require ~ 20,000 octupoles to retain stability

A. Valishev

Collective Instabilities

10/20/18

22

- In addition to the single-particle chaos, the beam can become unstable as a whole if resonantly excited by external field or via self-interaction through environment
- These instabilities can be suppressed by
 - External damping system presently the most commonly used mechanism to keep the beam stable.
 - 2. Landau damping the beam's own "immune system" related to the spread of betatron oscillation frequencies. The larger the spread, the more stable the beam is against collective instabilities.
 - 1965 Priceton-Stanford CBX: First mention of an 8-pole magnet
 - Observed vertical resistive wall instability
 - With octupoles, increased beam current from ~5 to 500 mA
 - CERN PS: In 1959 had 10 octupoles; not used until 1968
 - At 10¹² protons/pulse observed (1st time) head-tail instability. Octupoles helped.
 - Once understood, chromaticity jump at transition was developed using sextupoles.
 - More instabilities were discovered; helped by octupoles, fb
 - LHC has 336 octupoles that run close to 500A to create 0.001 tune spread
 - FCC will require ~ 20,000 octupoles to retain stability

Nonlinear Integrable Optics

- We want to build an optical focusing system that
 - a. Is strongly nonlinear = strong dependence of oscillation frequency on amplitude
 - b. Is 2D integrable and stable
 - c. Can be realized with magnetic fields in vacuum
- Mathematically, that means the system should
 - Possess two integrals of motion
 - Have steep Hamiltonian
 - Field potential satisfies the Laplace equation
- Practical benefits relevant to future HEP machines
 - Reduced chaos in single-particle motion
 - Strong immunity to collective instabilities via Landau damping

🚰 Fermilab

Nonlinear Integrable Optics Implementations at IOTA

- 1. Henon-Heiles type system with octupoles
 - Provides one invariant (limited DA)
 - Can be implemented with common octupole magnets
- 2. Danilov-Nagaitsev system
 - Two invariants of the motion (infinite DA)
 - Requires unique magnet
- 3. 2D Expansion of McMillan mapping
 - Two invariants of the motion
 - Implementation with electron lens
 - The steepest Hamiltonian

Henon-Heiles Type Systems (N.Kuklev's Thesis)

• For example, build *V* with Octupoles

- Only one integral of motion H
- Tune spread limited to ~12% of Q_0

S. Antipov, S. Nagaitsev, A. Valishev, JINST 12 (2017) no.04, P04008

🚰 Fermilab

25

10/20/18

Nonlinear Optics Magnet

RadiaBeam Technologies

V. Danilov, S. Nagaitsev, Phys. Rev. Spec. Topics –Accel. Beams. 13, 084002 (2010)

Electron lens in IOTA

IOTA Physics

- 1. Nonlinear Integrable Optics Experimental demonstration of NIO lattice in a practical accelerator
- 2. Beam Cooling
 - **Optical Stochastic Cooling** Proof-of-principle demonstration
 - Electron Cooling Advanced techniques
- **3. Space Charge Compensation** Suppression of SC-related effects in high intensity circular accelerators
 - Nonlinear Integrable Optics
 - Electron lenses
 - Electron columns
 - Circular betatron modes
- **4. Quantum Physics** Localization of single electron wave function

Beam Cooling in IOTA

- Fermilab is a world-recognized leader in beam cooling:
 - Both stochastic and electron cooling systems in the past
 - World's highest energy electron cooler in operation, 2005-2011

Optical Stochastic Cooling

PRL 96, 044801, 2006

🔀 Fermilab

- Two cooling concepts for Electron Ion Collider
 - Development of Innovative, High-energy, Magnetized Electron Cooling for an EIC
 - Ring-based high-energy electron cooler

Optical Stochastic Cooling

from ~10 cm to 1 um wavelength van der Meer, 1980's

A.Mikhailichkenko, M.Zolotorev Phys. Rev. Lett. 71 (25), p. 4146 (1993)

cooling

1. Each particle generates EM wavepacket in pickup undulator

- 2. Particle's properties are "encoded" by transit through a bypass
- 3. EM wavepacket is amplified (or not) and focused into kicker und.
- 4. Induced delay relative to wavepacket results in corrective kick
- 5. Coherent contribution (cooling) accumulates over many turns
- OSC promises new cooling scheme of relevance for high energy, high brightness proton bunches
- IOTA is designed to accommodate the OSC insert and proof-of-principle study with e-

口 Fermilab

graphics courtesy J.Jarvis

heating

IOTA Physics

- 1. Nonlinear Integrable Optics Experimental demonstration of NIO lattice in a practical accelerator
- 2. Beam Cooling
 - **Optical Stochastic Cooling** Proof-of-principle demonstration
 - Electron Cooling Advanced techniques
- **3. Space Charge Compensation** Suppression of SC-related effects in high intensity circular accelerators
 - Nonlinear Integrable Optics
 - Electron lenses
 - Electron columns
 - Circular betatron modes
- More QED,

Proton Space-Charge: Compensated by Electrons

Beam Phase Space Manipulation in FAST e-linac

 Experiments on conversion of magnetized beam into asymmetric-emittance beams

Beam Radiation – High-Flux γ-Ray Source via ICS

electron

scattered lupshifted)

Current Status

FAST Electron Linac Completed in 2017

- 100m of High Energy FAST beam line constructed
- 19 October for the first time, beam accelerated through ILC-type cryomodule to energy 150 MeV
 - Propagated to point of injection to IOTA
- 15 November beam accelerated to 301 MeV
 - World record ILC-type cryomodule acceleration of 255 MeV
 - Over 31.5 MV/m

2 Months of FAST Linac Operations in 2017

- Primary goal IOTA injector commissioning
 - Acceleration in CM-2 to 150MeV
 - Instrumentation
 - Machine Protection System
 - Machine stability and reproducibility
 - Beam line tuning for injection to IOTA
- Achievement of 300 MeV beam in SRF linac
 - Conditioning and phasing of cavities
 - Low-Level RF tuning
- Parasitically collaboration-driven experimental program

Overal uptime 85.6% normalized to planned hours of operation (2 shifts/day)

IOTA Construction Completed 7/31/2018

IOTA Commissioning

- First beam circulation August 21
 - − Linac: Gun+CC1+CC2 $CM2 \Rightarrow$ Injection energy of 47 MeV
 - IOTA: $RF \Rightarrow$ beam lifetime limited by SR losses
 - SR damping time 20s
 - Expected circulation time ~50,000 turns = 75 ms
 - Observed 40ms
- Commissioning at nominal energy October 9-
 - 100MeV beam captured in RF on October 16
 - Initial beam lifetime ~10 min
- Physics run November-January

Collaboration

- Beam physics calculations are critical for success of IOTA/FAST program
- We rely on collaborators in many aspects
 - RadiaSoft NIO and space-charge, Synergia
 - LBNL NIO, space-charge, Impact-z, Warp (C.Mitchell talk Wed.)
 - NIU NIO, Radiation studies, COSY infinity (B.Erdelyi talk this afternoon)
 - UMD NIO (K.Ruisard talk Tue.)
 - BINP (single-particle simulations, Lifetrac)

Summary

- Fermilab's FAST/IOTA is a flexible machine uniquely positioned to advance novel accelerator R&D
 - Nonlinear integrable optics
 - Space-charge effects and their suppression
 - Advanced beam cooling methods
 - High brightness beams and radiation sources

— ...

- Many opportunities for collaboration and training
 - Software for beam physics computations
- IOTA is entering first physics run
 - Commissioning started in Aug. 2018
 - Research Nov. 2018 Jan. 2019

