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Abstract
Modeling of radiation transport is an important topic

tightly coupled to many charged particle dynamics simu-
lations for synchrotron light sources and FEL facilities. The
radiation results from the electron dynamics and then passes
through beamlines, either directly to an experiment or may
be recirculated back to interact with the electron beam in the
case of an FEL oscillator. The Wigner function representa-
tion of these wavefronts have been described in the literature,
and is the closest relation to the phase space description of
charged particle dynamics. We describe this formalism and
the computation of phase space maps using the code SRW,
applying this to the case of a 4 crystal FELO 1:1 imaging
beamline, resulting in a substantial speed-up in computation
time.

INTRODUCTION
Optical beamlines for radiation transport are crucial com-

ponents of many scientific facilities. They may be used
to transport radiation from the electron beam source in a
synchrotron light source, or in recirculation optics in a free
electron laser oscillator (FELO) to improve longitudinal co-
herence of the radiation. Numerous codes exist to model the
radiation transport through the beamline elements typically
either using a ray tracing, geometrical optics approach (e.g.
SHADOW [1]), or a physical optics wavefront propagation
approach (e.g. SRW [2]). The wavefront propagation cap-
tures more of the optical physics, but can be highly intensive
computationally.

For FELO and synchrotron light source modeling, one
requires many passes of radiation through a beamline, while
varying either the initial conditions, or some beamline pa-
rameters. A more compact representation of a beamline is
desired for such calculations.

In this paper, we consider a map based approach to beam-
line modeling that, once computed, allows a large range of
initial conditions to be rapidly transported through the beam-
line. The formalism we use for representing the wavefront is
based on the Wigner function, pioneered in x-ray optics by
K. J. Kim [3]. Although the general non-linear map applied
to the Wigner function may be quite complex, in the case
of linear transport (so-called ABCD matrix, in the optics
literature), the transformation is quite straight forward.

We provide a proof of principle for this method, applied
to an FELO recirculation optics beamline, with radiation
transport of increasing complexity. The beamline is shown
in Fig. 1. The radiation transport starts at the end of the
undulator and diffracts off the crystals in Bragg geometry.
A single ideal lens is used for focussing the radiation back
∗ bnash@radiasoft.net

to the beginning of the undulator for the next pass. We first
consider Gaussian wavefronts, in which case, only transport
of second moments is necessary. We set up the beamline
in SRW and propagate the initial wavefront. We also com-
pute the transfer matrix for the beamline to transport the
Wigner function. For the Gaussian case, only the moments
need be transported, but we also apply the method to the
numerical Gaussian to check our calculation of the Wigner
function. Finally, we consider a non-Gaussian case of an
mx = 2 Hermite Gaussian mode, to show the generality of
the method. In each case, we compare the SRW simulation
to the linear transport of the Wigner function, to confirm
that the method is sound. One important difference between
our Wigner function transport and the wavefront propaga-
tion, is the absorption effect in the crystals. However, since
ideal crystals don’t affect the wavefront distribution, only
the intensity, the two effects can be treated separately.

Figure 1: Four crystal FELO beamline schematic as de-
scribed in reference [4].

LINEAR PARAXIAL OPTICS
PROPAGATION

We start by briefly reviewing the evolution equations for
a wavefront with wavelength λ propagating through empty
space. By this means we will set our notation, and clarify
the issue of separability, which we will be assuming. We
consider one component of an electric field travelling in the
z direction, which we write as

E(x, y, z; t) = Ē(x, y, z)ei(kz−ωt), (1)

where k = 2π
λ andω = ck. The paraxial Helmholtz equation

for the evolution of the electric field in free space is given by

∇2
⊥E + 2ik

∂E
∂z
= 0, (2)

where
∇2
⊥ =

∂2

∂x2 +
∂2

∂y2 (3)
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and we have assumed

∂2Ē
∂z2 � 2ik

∂Ē
∂z

(4)

(i.e. a slow change in transverse envelope relative to the
wavelength). Equation (2) may be solved to yield Fresnel
propagation of the electric field. In this paper, we will as-
sume electric fields which satisfy the separability condition

E(x, y; z) = E0Ex(x; z)Ey(y; z), (5)

where E0 is a constant with units of electric field.
For the case of separable electric fields, Fresnel propaga-

tion may be written in the following form.

E(x, y; z + l) = E0ei(kl−
π
2 )Ex(x; z + l)Ey(y; z + l), (6)

where

Ex(x; z + l) =
1
√
λl

∫ ∞

−∞

Ex(x ′; z)e
ik
2l (x−x

′)2 dx ′ (7)

and likewise for Ey .
The angular representation E(θ) for either component is

given by

E(θ) =
1
√
λ

∫ ∞

−∞

E(x)e−
2π i
λ θxdx. (8)

In this representation, the propagation is simply given by

E(θ; z + l) = E(θ; z)e
2π il
λ

(
1− θ2

2

)
. (9)

We normalize the separate field components such that1∫ ∞

−∞

E∗(x)E(x)dx = 1, (10)∫ ∞

−∞

E∗(θ)E(θ)dθ = 1. (11)

The second moments of the field distribution in coordinate
and angular representations may now be calculated as

< x2 > =

∫ ∞

−∞

x2E∗(x)E(x)dx, (12)

< θ2 > =

∫ ∞

−∞

θ2E∗(θ)E(θ)dθ. (13)

We now introduce the Wigner function defined from the
electric field, E(x), as follows

W(x, θ) =
1
λ

∫ ∞

−∞

E∗(x −
φ

2
)E(x +

φ

2
)e
−2π i
λ φθdφ, (14)

1 Note that we have normalized the electric field in the same way as wave
functions are normalized in quantum mechanics. In fact, much of the
formalism of quantum mechanics may now be directly applied with the
proviso that Planck’s constant, ~, be replaced by the reduced wavelength
o = λ/2π.

where W(x, θ) will be normalized as∫ ∞

−∞

∫ ∞

−∞

W(x, θ)dxdθ = 1. (15)

The Wigner function can be thought of as a probability distri-
bution in phase space except for the fact that it may become
negative. The second moments are given simply as

< x2 > =

∫ ∞

−∞

∫ ∞

−∞

x2W(x, θ)dxdθ, (16)

< θ2 > =

∫ ∞

−∞

∫ ∞

−∞

θ2W(x, θ)dxdθ, (17)

< xθ > =

∫ ∞

−∞

∫ ∞

−∞

xθW(x, θ)dxdθ. (18)

For propagation of the Wigner function, we briefly give
a general formulation before reducing to the simplified lin-
ear case. To do so, we assume the existence of a Hamilto-
nian, H(x, θ; z). We assume that we stay within the paraxial
approximation, and ignore the effect of absorption. The
evolution equation for the Wigner function is then given as
follows [5]

∂W(x, θ; z)
∂z

= [W,H]∗, (19)

where the Moyal bracket is defined for arbitrary phase space
functions f and g as

[ f , g]∗ =
1
io
( f ∗ g − g ∗ f ) (20)

and the Moyal star is given by

∗ = e
io
2

(←−
∂ x
−→
∂ θ−
←−
∂ θ
−→
∂ x

)
(21)

with the arrows representing action of the derivative, either
to the left or right, depending on arrow orientation.

Fortunately, in the case of a quadratic Hamiltonian, evo-
lution of the Wigner function is much more simple and
intuitive. Only first order in o is needed, and the Moyal
bracket reduces to the Poisson bracket giving classical evolu-
tion (again using the quantum/classical mechanics analogy).
One finds that the motion in phase space is a linear trans-
formation. These considerations allow us to formulate our
approach. In particular, consider a paraxial beamline where
the geometric optics will be defined by a transfer matrix M
acting on the phase space vector ®z:

®z f = M®zi, ®z =
(
x
θ

)
. (22)

The Wigner function will evolve along this beamline accord-
ing to

W f (®z) = Wi(M®z). (23)

The electric field may be reconstructed from the Wigner
function as follows [6]

E∗(x)E(0) =
1
λ

∫ ∞

−∞

W
( x
2
, θ

)
e

2π i
λ xθdθ. (24)
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Hermite Gaussian Modes
The Hermite Gaussian modes will satisfy the separability

condition (5). These modes are defined by

Em(x) = E0,mHm

(√
2x

w(z)

)
e−i

kx2
2q(z) , (25)

where E0,m is the normalization factor resulting in the nor-
malization condition (10) [7]. q(z) is the complex beam
parameter defined in terms of the beam radius of curvature,
R(z), and beam spot size, w(z):

1
q(z)
≡

1
R(z)

− i
λ

πw2(z)
. (26)

In empty space the beam spot size evolves as

w(z) = w0

√
1 −

(
z

zR

)2
(27)

with zR the Raleigh length, given by

zR =
πw2

0
λ
, (28)

and w0 is the beam spot size at waist. The radius of curvature
R(z) evolves as

R(z) = z

[
1 +

(
zR
z

)2
]
. (29)

For the case m = 0, we have a Gaussian field given explicitly
by

E(x) =
1

(2πσ2
x )

1/4
e
− x2

4σ2
x , (30)

where σx is the RMS size of the distribution. One can relate
σx to the beam spot size at waist via the equation w0 = 2σx .
This Gaussian distribution will satisfy the diffraction limit
which implies the following relation between the RMS size
and divergence

σxσθ =
λ

4π
. (31)

For the Gaussian case, the Wigner function propagation
may be reduced to a transformation of the second moments.
In particular, under a transfer matrix M , the second moments
will evolve as follows:

Σ f = MΣiMT , (32)

where the second moment matrix is given by

Σ =

(
〈x2〉 〈xθ〉
〈xθ〉 〈θ2〉

)
. (33)

MOMENT CALCULATIONS FOR FELO
BEAMLINE AND COMPARISON WITH

SRW
We have set up the four crystal beamline as described in

reference [4]. Note however that we’ve used even simpler
optics, with just a single ideal lens, located at the midpoint
of the beamline. See Fig. 1 for the schematic. The param-
eters used for this example calculation are as follows. The
undulator length, Lu is 10 meters. The total length, L, is
100 meters. The crystal diffraction angle, θ, is π/8. The
length of the lower leg of the beamline, S, is 3 meters. The
other parameters are then determined by geometric relations
and are as follows. L1 and L6 are 45.0 meters. L2 and L5
are 72.8 meters. L3 and L4 are 1.5 meters. The distance
between the two legs of the beamline, G, is 51.5 meters.

The reflecting crystals were chosen to be diamond with a d-
spacing of 0.892 Å. The crystal thickness was 10 millimeters.
The real and imaginary parts of the 0-th Fourier component
of crystal polarizability were−0.217×10−4 and 0.280×10−7

respectively. The real and imaginary parts of the next Fourier
component of crystal polarizability was −0.544 × 10−5 and
0.259 × 10−7 respectively.

In order to compare to the analytical approach, we need to
compute the transfer matrix M for the beamline. The effect
of the crystal is only to decrease the electric field amplitude,
and not change the wavefront distribution. Thus, disregard-
ing this absorption effect, we may ignore the crystals in our
analytical calculation. The transfer matrix may be calculated
using the matrices for a drift, Md , and for an ideal lens, Mf .
These are given by

Md =

(
1 l
0 1

)
, (34)

Mf =

(
1 0
− 1

f 1

)
, (35)

where l is the drift length and f is the focal length for the
ideal lens. The total transfer matrix MT is then given by
multiplying the component matrices for the beamline. The
transfer matrix for the simple single lens beamline is given
by

MT = MdMf Md (36)

=

(
1 − l

f 2l − l2

f

− 1
f 1 − l

f

)
. (37)

In the case that f = l/2 the transfer matrix simplifies to

MT =

(
−1 0
− 2

l −1

)
. (38)

To look at the effect of focusing errors, we have allowed
the focal length to vary from the nominal value by defining
f = l

2 (1 +
d f
f ). For varying values of d f

f , we have set up a
computation in SRW and also compared it to this moment
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calculation. The results are shown in Fig. 2. The SRW cal-
culation is a wavefront calculation. In order to compute the
divergence, we convert the wavefront to angular coordinates,
and then compute the RMS of the distribution. The initial
RMS beamsize for the Gaussian chosen was 10 micrometers.
Applying Eq. (31), we find an initial divergence at the waist
of 0.987 microradians.

We now give more details for the SRW simulation. The
initial Gaussian wavefront was represented on a grid of size
42 × 42. Each beamline element requires specification of
propagation parameters. These were chosen for drift, crystal,
and lens elements to ensure accuracy and avoid excessive
computational overhead. The final grid size needed to cap-
ture the full Gaussian ended up ranging from 42 × 42 to
52 × 52 as d f

f was varied.
SRW was run on the Radiasoft Jupyter server [8]. The

time required for the full SRW calculation was 12.8 seconds
and the time required for the matrix computation was 0.21
seconds. Note that the time for the SRW calculation in-
cludes the transformation of the wavefront from coordinate
to angular representation (see Eq. (8)) in order to compute
RMS divergences. The matrix transformation amounts to a
speedup of a factor of 608 over the SRW calculation.

Figure 2: Comparison between RMS size and divergence as
a function of focal length for the four crystal FELO beamline.

NUMERICAL WIGNER FUNCTION
EVOLUTION AND SRW COMPARISON
In order to consider non-Gaussian wavefronts, we need

to move beyond calculation of second moments. This re-
quires numerical calculation of the Wigner function and
inversion to reconstruct the electric field after propagation
using Eq. (24). To demonstrate this procedure and explore
the efficiency of the algorithms, we have implemented the
Wigner function calculation and inversion formulae numer-
ically. We first consider Gaussian distributions and then
give results for an mx = 2 Hermite Gaussian mode. The
beams are assumed to start at a waist and are then propa-
gated through the four crystal FELO recirculation beamline.
Because of the separability condition for Hermite Gaussian
modes, we can propagate the 2D wavefronts in SRW and
compare the results between the map method and SRW for
each individual component.

Gaussian Wigner Function
We now consider the results for Gaussian wavefronts. We

start with a Gaussian wavefront at a waist with an RMS
beam size of 10 µm. We consider x-rays of energy 10 keV
which corresponds to a wavelength of 1.23 Å. For the diffrac-
tion limited Gaussians satisfying Eq. (31), the divergence is
found to be 0.987 µrad. We construct such an initial Gaus-
sian wavefront for input to SRW for propagation. We prop-
agate the Gaussian through the FELO beamline we have
described. The initial grid size was 2100 × 2100 and the
grid size for the propagated wavefront was 3150×3150. The
initial and final wavefront intensity distributions are shown
in Fig. 3. Because of the one to one focusing optics, the
initial and final intensity distributions are equal although
the wavefronts themselves will differ. Due to the absorption
from the crystals in the beamline, the final intensity com-
puted with SRW is reduced from the initial intensity. We
find a reflection coefficient of R = 0.96 where we define R
as

R =
Φ f

Φi
=

∬
I f (x, y)dxdy∬
Ii(x, y)dxdy

, (39)

i.e. Φi and Φ f are the initial and final total fluxes of the
distribution.

Figure 3: Gaussian intensity distribution at a) waist and b)
after SRW propagation through FELO beamline.

In order to apply the map method, we have taken a hori-
zontal slice of the initial electric field generated by SRW. We
normalize this according to Eq. (10). We now compute the
numerical Wigner distribution which will also be Gaussian.
Next we apply the transfer matrix for the FELO recirculation
optics, Eq. (38). The transformed Wigner function is then
redeposited onto the initial grid. Initial transformed and
redeposited Wigner functions are shown in Fig. 4. Note that
for our angular variable, we have used q = θ/λ.

Given the propagated Wigner function, we reconstruct the
electric field using Eq. (24) and compare this to the results
found from SRW. We see good agreement which is presented
in Fig. 5.
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Figure 4: Numerically computed Wigner distributions a) at
waist, b) after application of FELO beamline transfer matrix,
and c) after redeposition of b) on initial grid.

Figure 5: Comparison of SRW and map method propagation
results for a) intensity, b) Re[E], and c) Im[E].

mx = 2 Hermite Mode Wigner Function
We now present the results for an mx = 2 Hermite Gaus-

sian mode. As in the Gaussian case, we start at a waist and
subsequently propagate the mode, using SRW, through the
four crystal FELO beamline, using the same grid sizes as
in the Gaussian case. We again consider x-rays of energy
10 keV, corresponding to a wavelength of 1.23 Å. Next, the
exact same method as used in the Gaussian case was applied
for the mx = 2 mode. The Wigner function was computed
and transformed with the transfer matrix and the distribu-
tion was redeposited onto the initial grid. This is shown
in Fig. 7. Note in particular the large region in which the
Wigner function takes on negative values outside the central
peak. Finally, the electric field was again reconstructed us-
ing Eq. (24). Again, due to the one to one focusing beamline,
the intensity distributions shown in Fig. 6 are equal whereas
the electric field distributions shown in Fig. 8 are not and
one can see the inversion from the transfer matrix in the
field components. The final comparison between intensity
and real and imaginary parts of the electric field for the two
different methods are shown in Fig. 9. We see that the map
method has agreed well with the SRW calculation.

Figure 6: mx = 2 Hermite mode intensity distribution at a)
waist and b) after SRW propagation through FELO beamline.

Figure 7: Numerically computed Wigner distributions a) at
waist, b) after application of FELO beamline transfer matrix,
and c) after redeposition of b) on initial grid.

Figure 8: Horizontal electric field at waist and after SRW
propagation through FELO beamline. a) Re[E] b) Im[E].

Figure 9: Comparison of SRW and map method propagation
results for a) intensity, b) Re[E], and c) Im[E].

Timing Comparison Between SRW and Map
Method Calculations

As with the moment calculations, the aforementioned
calculations were all performed on the Radiasoft Jupyter
server. The initial wavefront is computated in the same
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way for both methods and took several seconds for the grid
size used. The propagation through the FELO beamline in
SRW took 43 seconds and was approximately the same for
both Gaussian and non-Gaussian wavefronts. As with the
moment calculations, SRW propagation parameters were
tuned to achieve adequate results. We tried to ensure good
resolution on the resulting electric fields while minimizing
the overall grid sizes.

The calculation of the Wigner function and propagation
for the method took 38 seconds and was approximately the
same for both Gaussian and non-Gaussian wavefronts. As
can be seen, the algorithms as implemented are comparable
in speed. A large amount of the time for the map method
came from the deposition of the transformed Wigner func-
tion. A more efficient algorithm for that process is con-
ceivable. In addition we note that for a longer and more
complex beamline, the SRW calculation would increase in
time whereas the map method would not, once the transfer
matrix has been computed.

CONCLUSION
We have demonstrated the use of a map based method

for radiation transport through a beamline. We applied this
method to a simple 4 crystal recirculation beamline which
may be used for a free electron laser oscillator. For Gaussian
wavefronts, only moment transport is required. We showed
that such moment transport using a transport matrix for the
beamline agrees very well with a more complete wavefront
computation using the SRW code. The moment transport
is substantially faster, by a factor of 608 for this particular
case. In order to apply the method to non-Gaussian wave-
fronts, we computed the numerical Wigner function from
the wavefront and demonstrated the linear transformation
in phase space of this Wigner function. We did this both
for a Gaussian and for an mx = 2 Hermite Gaussian mode.
We then reconstructed the electric field and showed good
agreement with SRW simulation. We considered cases in
which the field profile is separable so that we could work
with 2-D phase space instead of 4-D phase space. In this
case, the map method was found to be comparable in speed
with the SRW calculation. However, as discussed, we expect
that we may be able to speed up the map calculation, and
in addition it would be substantially faster in the case of a
beamline containing a larger number of optical elements.
Regardless of the complexity, transport of the wavefront
through the beamline is all contained within a single transfer
matrix. Finally, we point out that partial coherence may be
included in the Wigner function and the transport of this
Wigner function is no more complicated than the case of a
fully coherent beam.

Next steps include development of the corresponding rou-
tines for 4-D phase space, computation of the transfer ma-
trix for arbitrary beamlines using a ray tracing code such as
SHADOW, inclusion of partial coherence in the Wigner func-
tion, treatment of polarization, and inclusion of elements
such as apertures or elements where the linear transport is
not applicable and require special direct transformation of
the Wigner function. In this latter case, we envisage us-
ing matrices for partial maps between such elements, and
still expect a substantial speed up over the full wavefront
propagation.

For the FELO simulations, we expect to be able to com-
bine these simulations with a rapid FEL model to allow us
to model the build-up of coherence within a manageable
computation.
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