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Abstract
Superconducting radio frequency (SRF) cavities meet the

demanding performance requirements of modern acceler-
ators and high-brilliance light sources. For the operation
and design of such resonators, a very precise knowledge of
their electromagnetic resonances is required. The non-trivial
cavity shape demands a numerical solution of Maxwell’s
equations to compute the resonant eigenfrequencies, eigen-
modes, and their losses. For large and complex structures
this is hardly possible on conventional hardware due to the
high number of degrees of freedom required to obtain an
accurate solution. In previous work it has been shown that
the considered problems can be solved on workstation com-
puters without extensive simplification of the structure itself
by a combination of State-Space Concatenation (SSC) and
Newton iteration to solve the arising nonlinear eigenvalue
problem (NLEVP).

First, SSC is applied to the complex, closed and thus loss-
less RF structure. SSC employs a combination of model
order reduction and domain decomposition, greatly reducing
the computational effort by effectively limiting the consid-
ered frequency domain. Next, a perturbation approach based
on SSC is used to describe the resonances of the same ge-
ometry subject to external losses. This results in a NLEVP
which can be solved efficiently by Newton’s method. In this
paper, we expand the NLEVP solution algorithm by a con-
tour integral technique, which increases the completeness
of the solution set.

INTRODUCTION
Superconducting radio frequency (SRF) cavities are es-

sential components of modern particle accelerators, as they
provide the radio frequency (RF) electromagnetic fields used
to accelerate charged particles to high energies. The design
of RF cavities requires a precise knowledge of their reso-
nant frequencies f , field distributions, and power losses P.
This usually requires solving an eigenvalue problem, where
the eigenvalues and eigenvectors correspond to the frequen-
cies and field distributions, respectively. In this context, the
eigenvectors are also denoted as eigenmodes of the cavity.

A dimensionless measure for power losses in general is
the quality factor

Q = 2π f W/P, (1)
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which is the ratio between the energy loss per oscillation and
the total energy W stored in the electromagnetic field. Gen-
erally, there are dielectric, magnetic, surface and external
losses. The latter occur when energy is propagating out of
the cavity through its openings, e.g. a coupler or the beam
pipe. For an SRF cavity, the external losses are several orders
of magnitude larger than other loss mechanisms, since the
structure is both superconducting and evacuated [1]. There-
fore, the external quality factor Qext is often equivalent to
the total Q (and in the following denoted as such). External
losses are of significant importance for eigenmodes, whose
resonant frequencies are larger than that of the operating
mode used for acceleration. They are denoted as higher
order modes (HOM). These usually unwanted modes are
excited by the current of the passing beam and may influ-
ence the beam in an unwanted manner, e.g. by deviation
from its optimum trajectory or emittance growth [2, 3]. One
usually designs cavities such that HOM energy is dissipated
quickly and the mode is practically completely damped be-
fore the next particle bunch arrives. The structures must
thus feature low Q factors regarding the HOMs. Besides
available openings like the beam pipe or the power coupler,
HOM couplers are utilized. Nevertheless, there exist addi-
tional HOMs whose interaction with the couplers is almost
non-existent and which therefore have very high Q factors.
Identification and computation of these trapped modes is
particularly important in SRF cavity design [1, 4, 5].

Even for comparatively simple structures, an analytical
solution of Maxwell’s equations [6] is not available. Numer-
ical methods such as the Finite Element Method (FEM) [7]
or Finite Integration Technique (FIT) [8, 9] are therefore
employed. If one solely considers closed lossless cavities,
this leads to a linear eigenvalue problem (LEVP), whose
solution can be acquired by a variety of methods. However,
the precise computation of external losses is accomplished
by applying suitable boundary conditions to the cavity’s
openings leading to a complex-valued, nonlinear eigenvalue
problem (NLEVP), whose solution requires significantly
more effort.

The above-mentioned numerical methods show disadvan-
tageous scaling behavior regarding size and complexity of
the structure. Especially large and complex structures, e.g.
a sequence of cavities and couplers like in Fig. 1, require
many degrees of freedom (DOF) for an accurate solution.
In a direct approach, these problems can only be solved
on powerful computational infrastructure which is costly
and rarely available. Another possibility is to only con-
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sider a part of the structure by restricting the computational
domain. While this approach is suitable if the fields are
confined in one cavity, a significant portion of HOM energy
is stored in electromagnetic fields that may fill the entire
structure [1] (Fig. 1(b)). Such fields cannot be computed if
the domain is limited to a single cavity.

(a)

(b)

Figure 1: Electric field of two HOMs of the bERLinPro
linac [10]. (a) Mode resonating at 3.68 GHz that is confined
within the cavities. (b) Mode resonating at 1.86 GHz with
a field distribution filling the entire structure. The plots are
taken from [11].

In [11] it was shown by Heller that employing the State-
Space Concatenation Scheme (SSC) [12, 13] together with
suitable boundary conditions leads to a NLEVP which can be
solved efficiently by Newton’s method [14]. In this paper, we
extend upon these results by combining them with a contour
integral algorithm proposed by Beyn [15] to increase the
completeness of the solution set. The proposed technique has
been used to investigate current examples from accelerator
physics.

STATE-SPACE CONCATENATION
SSC has been suggested by Flisgen [12, 13] and is a combi-

nation of domain decomposition and model order reduction
(MOR) techniques to solve Maxwell’s equations for large
complex SRF structures. We will introduce it briefly here;
for an exhaustive explanation we refer to [13, 16–18].

First, the investigated structure is decomposed into non-
overlapping segments. The substructures are treated sepa-
rately, with the cutting planes considered as waveguide ports.
For each segment, a State-Space model (SSM) is assembled.
An incomplete eigendecomposition is performed, comput-
ing a finite number1 of 3D eigenmodes around the frequency
interval of interest. Due to poor convergence of the incom-
plete decomposition, a very high number of modes would
be necessary, since even the structure’s behavior within a
certain frequency range is influenced by modes outside said
range. Instead, the orthogonal basis is expanded by so-called
snapshots computed from the frequency response of the seg-
ment to certain excitations. This is done for a total of N3D
modes. This technique is denoted as Corrected Modal Ex-
pansion (CME) [17]. The 3D modes represent the internal
states of the system comprised in the state vector x. For
each waveguide port, 2D port modes are computed, with
N2D denoting the total number of port modes of the segment.
1 The amount of 3D eigenmodes is by orders of magnitude smaller than

the DOFs.

Their amplitudes are comprised in the vector of modal cur-
rents i and modal voltages v. The coupling between 3D
eigenmodes and 2D port modes is obtained as the inner
product of the respective fields. In frequency domain, the
assembled first-order SSM2 reads as

sx(s) = Ax(s) + Bi(s)
v(s) = Cx(s), (2)

with A ∈ R2N3D×2N3D , B ∈ R2N3D×N2D and C = BT.
The individual SSMs of the segments are concatenated

by assembling A, B, and C from (2) into block matrices.
Redundant modal currents and voltages at connected ports
are eliminated using Kirchhoff’s laws, so that only those of
external ports remain. The MOR by CME is again applied to
the concatenated SSM, further reducing the DOFs. The re-
sulting reduced SSM of the complex structure is again of the
same form as (2). The external modal currents and voltages
can be used to assign excitations or boundary conditions to
the structure.

SSC is not the only Maxwell solution approach involv-
ing a domain decomposition and concatenation approach.
Notable methods are the mode-matching techniques e.g. [4,
5, 19–22], the Coupled S-Parameter Calculation [18, 23–
25], the Generalized Scattering Matrix approach [26–28] or
the description of RF structures by means of circuit theory,
e.g. [17, 29]. However, to the best of the authors’ knowl-
edge, only SSC allows simultaneous and direct access to
time and frequency domain calculations, MOR and 3D field
distributions [11–13].

EXTERNAL LOSSES IN SRF CAVITIES
For the computation of external losses of an SRF cavity,

the openings are modeled as having infinitely long waveg-
uides attached to them, i.e. being reflection-free. Therefore
impedance matching is required: the termination impedance
(i.e. the quotient of modal voltage and current) of each port
mode must be the wave impedance of said mode [30].

Each eigenmode of the lossy structure is described as
a weighted sum of the eigenmodes of the corresponding
lossless structure. In this perturbation ansatz usually one of
the lossless eigenmodes dominates. For the description of
certain perturbations, very high frequencies are necessary;
in that case a large number of lossless eigenmodes must be
considered in the preceding MOR. The resulting NLEVP
read as [11, 16, 30]

T (λ)x =
(
A − BG(λ)BT − λI

)
x = 0, (3)

where λ and x denote the eigenvalue and eigenvector, respec-
tively. The individual frequencies and external Q factors are
obtained by

f =
= {λ}

2π
Q = − = {λ}

2<{λ} , (4)

2 The SSM may also be assembled as a symmetric second order system
with half the degrees of freedom. Both can also be represented in time
domain.
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while the field distributions can be reconstructed from the
respective eigenvectors.

The diagonal matrix G(λ) contains the reciprocal wave
impedances (i.e. wave admittances) of the port modes which
depend nonlinearly on the eigenvalues and are given for
transversal electric (TE) and magnetic (TM) port modes
by [31]

ZTE
wave(λ) = Z0

λ√
λ2 + ω2

co

ZTM
wave(λ) = Z0

√
λ2 + ω2

co
λ

,

(5)

where Z0 ≈ 377Ω is the impedance of free space and
ωco denotes the cutoff frequency of the respective port
mode. For transversal electromagnetic (TEM) waves this is
the impedance of the connected transmission line, usually
ZTEM

wave = 50Ω.
The introduction of the wave impedances (5) causes the

operator T (λ) to be both nonlinear and meromorphic: iso-
lated poles occur at λ = 0 and at the cutoff frequencies ωTM

co
of the TM port modes.

SOLVING THE NLEVP
The solution of NLEVPs T (λ)x = 0 such as (3) is signifi-

cantly more demanding than that of well-known LEVPs, for
which a wide range of solution methods exist [32–34]. The
NLEVP is subject of active ongoing research. An overview
over NLEVP solution approaches is given by [33, 35–39],
notably the Newton iteration [14], contour integral meth-
ods [15, 40], or methods based on generalized QR decom-
positions [41] or Rayleigh functionals [42, 43].

In this work, we utilized Newton’s method as well as a
contour integral algorithm suggested by Beyn [15]. Both
are introduced in the following.

Newton’s Method
The well-known Newton’s method [14] is used to succes-

sively approximate zeros of functions or operators. Solving
the NLEVP (3) can be interpreted as finding zeros of T (λ)x
in an (N + 1)-dimensional search space, where all compo-
nents of the eigenvector x ∈ CN and the eigenvalue λ itself
must be determined. Hence, a suitable formulation of the
Newton iteration can be found [33, 36, 37].

Without loss of generality, the eigenvector is normalized
according to vHx = 1 and (3) is reformulated to

P

(
x
λ

)
=

(
T (λ)x
vHx − 1

)
= 0. (6)

Applying the iteration rule yields(
xν+1
λν+1

)
=

(
xν
λν

)
−

(
P′

(
xν
λν

))−1
P

(
xν
λν

)
, (7)

where ν denotes the iteration index and P′ is called Fréchet
derivative [44] of P. The initial pair (λ0, x0) must be known

a priori. The initial pairs are usually obtained by solving a
linearized system or (additionally) sampling the domain of
interest using a grid or Monte Carlo methods.

As (7) is difficult to implement, one introduces the search
direction u as an auxiliary quantity from which the approxi-
mated eigensolution is computed:

uν+1 = T
−1(λν)∂T

∂λ
(λν)xν

xν+1 = cν+1uν+1

λν+1 = λν − vHxν
vHuν+1

,

(8)

where cν is a normalization factor that influences the con-
vergence speed3. In general, the iteration (8) stops when an
error measure falls below a certain limit4.

When employing Newton’s method, convergence against
previously computed eigenpairs must be avoided, which is
called deflation. Most techniques of the LEVP solvers can-
not be used [33], since the eigenvectors of the NLEVP are
generally linearly dependent. A possibility is to choose v
in each new solution attempt orthogonal to all previously
computed eigenvectors. More sophisticated deflation tech-
niques can be developed based on minimal invariant pairs,
requiring an alternative formulation of the algorithm [39].

Beyn’s Algorithm
The integral algorithm introduced by Beyn [15] allows

for a complete solution of a NLEVP within a finite enclosed
sub domain of the complex plane. We explain it briefly and
refer to [15, 45, 46] for a detailed derivation.

The algorithm is based on Keldyš’s theorem [45] stating
that the inverse of T (z) may be expanded into a Laurent
series, whose principal part can be expressed in terms of the
right and left eigenvectors x, y belonging to λ:

T−1(z) =
k∑
j=1

1
z − λj x j y j + (holomorphic part). (9)

Choosing a rectangular matrix Ψ at random, the integrals

Lp =
1

2πj

∮
Γ

zpT−1(z)Ψdz , p = 0,1 (10)

are computed using numerical integration along a closed
contour Γ. The computational cost is dominated by solving
the linear system T−1(z)Ψ at every quadrature sampling
point. The convergence behavior depends on the condition
of the operator T (z), the number of sampling points, and
chosen quadrature rule [15, 47, 48].

From (9) it follows by Cauchy’s integral formula [34]
that L0 = XYΨ and L1 = XΛYΨ . The matrices X , Y and
3 In practice one choses e.g. cν = 1/ | |uν | |; however it has been observed

that |cν | � 1 leads to instability of the algorithm in rare cases. In [33]
the condition |cν | < 1 is mentioned to guarantee convergence.

4 To account for potentially occurring non-convergence, the algorithm
should additionally be stopped when a maximum number of iterations is
reached.
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Λ contain the left and right eigenvectors and eigenvalues,
respectively, that are enclosed by Γ, but are independent of
the specific contour shape. They are extracted using singular
value decomposition.

In this work, we combine Beyn’s algorithm with a subse-
quent Newton iteration to improve convergence as suggested
in [36, 38], since the algorithm on its own shows disadvan-
tageous convergence behavior when employed to the SRF
cavity NLEVP. The solutions found by Beyn’s algorithm are
used as starting pairs for Newton’s method. This has initially
been tested in [48] and is demonstrated below.

The alternative Contour Integral Slicing Method proposed
by [40] should also be acknowledged. It is available within
the SLEPc library [49] combined with a Newton iteration in
a similar fashion.

APPLICATION EXAMPLES
In the current setup implemented in [11], the SRF struc-

ture is discretized by FIT in CST Microwave Studio
(CST MWS) [50]. The assembled matrices are transferred to
and further processed in MATLAB [51] using a collection
of scripts written in Python [52] and Visual Basic for Ap-
plications. The arising linear systems and decompositions
are computed using linear algebra software packages like
LAPACK [53] and ARPACK [54], which are made avail-
able by MATLAB and the Python packages NumPy [55]
and SciPy [56]. The field plots are generated using Par-
aview [57].

All mentioned computations have been performed on
an Intel Xeon E5-2687W CPU with 3.4 GHz clock rate,
256 GB RAM and Windows Server 2012.

Academic Example
The hypothetical minimalistic resonator depicted in Fig. 2

serves as a proof of principle. The cavity has two waveguide
ports symbolizing a beam pipe and a HOM coupler. The
structure is discretized in CST MWS using FIT with 233,000
mesh cells and Perfect Boundary Approximation [58]; after
the MOR the arising NLEVP is of order N = 178.

40

8040

35

22 10

23.023

32

20

Figure 2: CAD model and sketch of the minimalistic res-
onator used as an academic example [11, 48]. Beam pipe and
HOM coupler are highlighted in blue and red respectively.
Geometric dimensions in mm.

Figure 3 shows the convergence behavior of Beyn’s al-
gorithm applied to this example with different numbers of
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Figure 3: Eigensolutions of the minimalistic resonator
with corresponding residuals r computed using Beyn’s
algorithm with different numbers of quadrature points:
(a) NQuad = 100, (b) NQuad = 6000. The residual does not
decrease for larger numbers of points, but can be further
reduced by consecutive Newton iteration (c).

quadrature points NQuad. The relative residual

rn =
| |T (λn)xn | |
| |xn | | (11)

is used as an error measure. Even for very large NQuad, the
residual cannot be reduced below a certain limit. However,
the convergence can drastically be improved by employing
Newton’s method. For comparison, reference solutions are
computed from the scattering parameters of the structure
using pole fitting [11, 59, 60].

The time consumption of different setups is depicted in
Fig. 4. The Newton iteration on its own computes solutions
individually and fast, but without guaranteeing completeness.
Employing Beyn’s algorithm with comparably low numbers
of quadrature points and using its solution as initial values
for the Newton iteration yields the optimum solution strategy
for this structure.
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Figure 4: Time consumption of the different algorithms
when solving the NLEVP of the minimalistic resonator.

FLASH Third Harmonic Cavity
The SRF structure depicted in Fig. 5 is part of the Third

Harmonic Module [61, 62] of the Free Electron Laser in
Hamburg (FLASH). It consists of a nine-cell 3.9 GHz cavity,
an input coupler and two HOM couplers. For the MOR
by SSC, it is decomposed into three segments. Due to the
three couplers in addition to the beam pipe, five external
waveguide ports are defined, and the NLEVP is of order
N = 780.

Figure 5: CAD model of the FLASH cavity. The colors
indicate the chosen domain decomposition for SSC.

Figure 6(a) shows the results obtained by Beyn’s algorithm
with NQuad = 2000 quadrature points and the correspond-
ing residuals. While for most higher-Q modes an acceptable
residual is achieved, the lower-Q modes do not converge even
for by orders of magnitude larger NQuad (10−1 ≤ r ≤ 10−4).
We can again improve the eigensolutions by individual
Newton iteration. To achieve a residual below 10−5 down
to 10−10, 4 min are required by Beyn’s algorithm, whereas
the Newton iteration consumes an additional 6 min. The
corresponding solutions are shown in Fig. 6(b). Especially
in the more relevant cases of larger Q factors, i.e. potentially
dangerous parasitic eigenmodes, a very good agreement is
observed with the pole fitting solutions [11, 59, 60].

Next we compare the eigensolutions of the FLASH cavity
found by Newton’s method alone and when combined with
Beyn’s algorithm. Figure 7 depicts the computed frequen-
cies and external Q factors and the electric field of a few
selected modes is shown in Fig. 8. Newton’s method solves
the NLEVP with residuals 10−5 ≤ r ≤ 10−10 in about 7 min.
The combination of both algorithms finds a few additional
solutions mainly in the low-Q range, but is slightly slower
(10 min). The difference in computational speed by a few
minutes when solving the NLEVP is insignificant compared
to the time consumption of the preceding MOR: the gen-
eration of the reduced SSM of the concatenated structure5

5 The initial FIT mesh has roughly 3 · 106 DOF. 200 to 300 3D eigenmodes
are computed in each segment. For the external waveguide ports 25 port
modes are considered in total.

takes roughly 7 h. However, the MOR by SSC approach is
much faster than alternative methods.
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Figure 6: Computed frequencies and Q factors of the FLASH
cavity with corresponding residuals r. (a) Solutions com-
puted by Beyn’s algorithm with NQuad = 2000 quadrature
points. Even for much larger NQuad, the residuals do not
improve significantly. (b) The convergence can be improved
for individual eigenmodes by employing Newton iteration.
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Figure 7: Eigensolutions of the FLASH cavity computed
from the NLEVP by sole Newton iteration and by Beyn’s
algorithm with consecutive Newton iteration, with pole fit-
ting solutions as reference. The markings (a)-(d) refer to the
field distributions depicted in Fig. 8.

CONCLUSION
The method developed in [11–13] allows the computation

of resonant frequencies, external losses and field distribu-

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-TUPAG07

TUPAG07
274

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

C-2 Electromagnetic Field Computations



(a)

(b)

(c)

(d)

Figure 8: Electric fields of selected eigenmodes of the
FLASH cavity: (a) Accelerating π-mode at 3.90 GHz.
(b) Potentially dangerous trapped mode at 4.14 GHz with
high Q and non-zero R/Q. (c) Trapped mode at 7.27 GHz
and the highest Q within the analyzed spectrum. (d) Mode
at 7.10 GHz with strong coupling to the cavity ports.

tion of complex SRF structures without extensive geometric
simplification on workstation computers. The MOR and
domain decomposition by SSC significantly reduce the com-
putational effort. Using a perturbation approach and nonlin-
ear boundary conditions, a NLEVP describing the external
losses is obtained. The Newton iteration [14] can solve the
arising NLEVP efficiently. This paper extends the approach
by solving the NLEVP using Beyn’s contour integral algo-
rithm [15]. The convergence of this algorithm is observed to
be limited for the type for NLEVP arising from SRF cavities.
However, using it to compute initial eigenpairs for a con-
secutive Newton iteration shows promising results. More
eigenmodes can be found in a comparable amount of time
than by solely employing Newton’s method. The approach
has been demonstrated on an academic and a real-life SRF
resonator.
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