
COMPUTATION OF EIGENMODES IN THE BESSY VSR CAVITY CHAIN
BY MEANS OF CONCATENATION STRATEGIES∗

Thomas Flisgen†, Adolfo Vélez
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany

Johann Heller, Shahnam Gorgi Zadeh, and Ursula van Rienen
Institute of General Electrical Engineering, University of Rostock, 18059 Rostock, Germany

Abstract
The computation of eigenmodes in chains of supercon-

ducting cavities with asymmetric couplers is a demanding
problem. This problem typically requires the use of high-
performance computers in combination with dedicated soft-
ware packages. Alternatively, the eigenmodes of chains of
superconducting cavities can be determined by the so-called
State-Space Concatenation (SSC) approach that has been
developed at the University of Rostock. SSC is based on
the decomposition of the full chain into individual segments.
Subsequently, the RF properties of every segment are de-
scribed by reduced-order models. These reduced-order mod-
els are concatenated to a reduced-order model of the entire
chain by means of algebraic side constraints arising from
continuity conditions of the fields across the decomposi-
tion planes. The constructed reduced-order model describes
the RF properties of the complete structure so that the field
distributions, the coupling impedances and the external qual-
ity factors of the eigenmodes of the full cavity chain are
available. In contrast to direct methods, SSC allows for
the computation of the eigenmodes of cavity chains using
desktop computers. The current contribution revises the
scheme using the BESSY VSR cavity chain as an example.
In addition, a comparison between a direct computation of
a specific localized mode is described.

INTRODUCTION
The computation of eigemodes of superconducting RF

resonators used for the acceleration of charged particles is
a standard task in computational accelerator physics. Com-
plementary to the characterization of the accelerating mode,
higher-order modes are of special interest as they can in-
teract with the beam as well and may lead to additional
cryogenic load or beam instabilities. Often eigenmode com-
putations are restricted to single cavities with couplers to
reduce computational efforts, despite the fact that the cavi-
ties are arranged in chains and are connected via the beam
pipes. These chains are accommodated in cryomodules pro-
viding the cryogenic infrastructure to cool the resonators so
that their surfaces become superconducting.

The consideration of single cavities with couplers is a
reasonable approximation for characterizing the accelerating
mode as the field distribution of this mode is on purpose
∗ The research leading to these results was supported by the German Bun-

desministerium für Bildung und Forschung, Land Berlin and grants of
Helmholtz Association.
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confined in the cavity. However, the restriction to a single
cavity often becomes invalid for higher-order modes, in
particular if mode resonant frequencies are larger than the
fundamental cutoff frequency of the beam pipe connecting
the adjacent cavities. The field distributions of higher-order
modes in cavity chains are much more complex than in single
cavities as the fields can be distributed along the entire cavity
chain or along parts of it.

Direct approaches to determine the eigenmode spectrum
of cavity chains require high-performance computers [1–4].
Alternatively, the State-Space Concatenation (SSC) [5–9]
approach allows for computing the eigenmodes in complex
chains of cavities with asymmetric couplers using desktop
computers. The scheme is based on decomposing the com-
plex cavity chain into segments. The electromagnetic fields
of the segments are described using state-space equations
(coupled systems of ordinary differential equations) obtained
from analytical calculations or from numerical discretiza-
tion techniques such as the Finite-Integration Technique [10,
11]. Typically, the aforementioned state-space equations
have many degrees of freedom to account for the distributed
nature of the underlying partial differential equations. Fortu-
nately, the number of degrees of freedom for each state-space
model can be significantly reduced using model-order reduc-
tion (MOR) approaches [12–14]. Subsequently, all reduced-
order models are concatenated by means of algebraic side
constraints, which ensure that the tangential electric and
magnetic fields are continuous across the surfaces of the
decomposition planes. This concatenation delivers a very
compact description of the complex structure in terms of
its electromagnetic properties and allows for the determina-
tion of its eigenmodes by computing the eigenvalues and
eigenvectors of comparably small matrices.

In this paper, the SSC scheme is revised using the BESSY
VSR chain of superconducting cavities as an application
example. The presented work has been conducted in the
framework of a collaboration between the University of Ro-
stock and the Helmholtz-Zentrum Berlin. Predominantly,
this article is based on the internal report [15], which com-
prises all details of the computations. The field patterns and
properties of the computed eigenmodes are listed in a com-
pendium attached to [15]. All computations for the internal
report have been conducted by J. Heller. In addition to the
results provided by the internal report, this article presents
a comparison between results from SSC and a direct com-
putation using CST Studio Suite® (CST) [16]. Note that
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(a)

(b)

Figure 1: (a) Geometry of the BESSY VSR cavity string. Its main components are two cavities whose TM01-π-modes
resonate at 1.5 GHz and two cavities whose TM01-π-modes resonate at 1.75 GHz. All cavities are constructed by means of
ellipses. The 1.5 GHz cavities are located at both ends of the chain whereas the 1.75 GHz cavities are in between. Each
cavity is equipped with one fundamental power coupler and five waveguides for the absorption of higher-order modes. At
both ends of the complete chain endgroups with tapers, bellows, pump domes and dielectric absorbers are located. The
figure is adapted from [15]. (b) Decomposition of the chain of cavities into individual segments. The green lines denote
the decomposition planes. The arising segments are: 1. endgroup, 2. valve, 3. bellow, 4. cavity (1.5 GHz), 5. shielded
bellow, 6. cavity (1.75 GHz), 7. collimating shielded bellow, 8. cavity (1.75 GHz), 9. shielded bellow, 10. cavity (1.5 GHz),
11. bellow, 12. valve, and 13. endgroup.

further comparisons between direct computations and SSC
computations are available in [5, 6, 8, 9].

EIGENMODES OF THE BESSY VSR
CHAIN USING SSC

The third generation light source BESSY II is operated
by the Helmholtz-Zentrum at the Wilhelm-Conrad-Röntgen-
Campus in Berlin Adlershof in Germany. BESSY II is a user
facility providing photon pulses ranging from the Terahertz
to the hard X-ray regime. Its main component is a ring with
a circumference of 240 m which can store currents up to
300 mA with the energy of 1.7 GeV. Currently, the upgrade
of BESSY II to BESSY VSR (Variable pulse-length Storage
Ring) is in preparation. BESSY VSR allows for simulta-
neously storing long and short pulses in the machine [17–
19].

The upgrade requires the insertion of a cryomodule ac-
commodating two superconducting 1.5 GHz and two super-
conducting 1.75 GHz four-cell resonators into the existing
BESSY II ring. Figure 1 depicts the layout of the string
of superconducting cavities. The first and the last cavities
in the string are constructed such that their TM01-π-modes
resonate with 1.5 GHz, whereas the two cavities in the cen-
ter of the chain are designed so that their TM01-π-modes
resonate with 1.75 GHz. The four cavities in the BESSY
VSR cavity chain are connected by means of bellows. The

chain is equipped with pump domes, dielectric absorbers,
bellows and tapers at both ends. Please refer to Figure 2 in
[20] for a detailed view of the endgroups.

The superposition of the accelerating fields of all four cav-
ities depicted in Figure 1 results in a beating pattern. In fact,
the derivative with respect to the longitudinal direction of
the voltages cancels for every second bunch whereas for the
remaining bunches the derivative of the voltages construc-
tively is added up. Together with the optics of the machine,
the voltage beating pattern leads to long and short pulses
simultaneously stored in the ring.

Eigenmodes and their Properties
The electric fields En(r) of the eigenmodes in the cavity

string fulfill Helmholtz equation

∆En(r) + εµω2
n En(r) = 0 (1)

with the boundary conditions

n × En(r) = 0 on ∂ΩPEC (2)

and
n · En(r) = 0 on ∂ΩPort. (3)

Here, ε and µ denote the permittivity and the permeability
of free space, respectively. The resonant angular frequency
of the nth eigenmode is denoted by ωn. Perfect electric
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conducting boundary conditions are assumed on the bound-
ary ∂ΩPEC of the superconducting cavities, whereas perfect
magnetic conducting boundary conditions are enforced on
the boundary ΩPort of the external waveguide ports. External
waveguide ports are assigned at the beam pipe at both ends
of the chain, at the ends of the fundamental power couplers
and at the ends of the higher-order mode couplers.

In addition to the frequencies fn = ωn/2/π and the
field distributions En(r) of the eigenmodes, their coupling
impedances(

r
Q

)
n

=
1

ωn Wn

����∫ zmax

zmin

En,z(x0, y0, z) ejωnz/c dz
����2 (4)

are of special interest. Here, Wn denotes the energy stored
in the nth eigenmode, zmin and zmax the beginning and the
end of the chain in longitudinal direction, En,z(x0, y0, z) the
on-axis longitudinal component of the electric field of the
nth eigenmode and c = 1/√εµ the speed of light in vacuum.

Another important quantity related to resonant modes is
the external quality factor defined by

Qext,n =
ωn Wn

Ploss,n
, (5)

where Ploss,n is the propagation of energy through the open
waveguide ports of the structure. Note that the external
quality factors Qext,n do not directly result from Eqs. (1–3)
because perfect magnetic boundary conditions are enforced
on the port planes ΩPort. Consequently, the Poynting vector
normal to the port boundary equals zero. Nonetheless, Qext,n
can be approximated from the lossless eigenmodes using a
later described perturbation approach.

It is worth to note that the coupling impedance (r/Q)n
specifies the coupling of the eigenmode with the bunch of
charged particles, whereas the external quality factor Qext,n
quantifies the coupling of the mode to the waveguide ports.

Decomposition of the Chain into Segments
In a first step, the BESSY VSR cavity chain is decom-

posed into individual segments. The decomposition planes
are depicted in Figure 1(b) by green lines. In total, 13 seg-
ments are obtained. Following Figure 1(b) from the left to
the right, the segments are endgroup, valve, bellow, cavity
(1.5 GHz), shielded bellow, cavity (1.75 GHz), collimating
shielded bellow, cavity (1.75 GHz), shielded bellow, cavity
(1.5 GHz), bellow, valve, and endgroup. Note that the de-
composition planes are chosen at regions of constant cross
section to keep the number of 2D port modes required for
the field expansion in the cut planes small. To each 2D port
mode a modal voltage corresponding to the electric field
distribution of the port mode and a modal current corre-
sponding to the magnetic field distribution of the port mode
are assigned. It is distinguished between internal ports lo-
cated at the cutplanes arising from the decomposition and
external ports located at the ends of the beam pipe or at
ends of power and higher-order mode couplers. Depending
on the cross section of the cutplanes 8, 16, or 20 2D port

modes are considered for the field expansion in these planes.
Consequently, 8, 16, or 20 modal voltages and currents are
required per cutplane per segment. Please refer to column
five in Table 3.1 in [15] for more details.

Electromagnetic Properties of the Segments
To describe the electromagnetic properties of the R = 13

segments, each substructure is discretized by means of a
hexahedral mesh using the commercial software CST [16].
Subsequently, the discrete wave equation with excitation is
exported to MATLAB [21], so that the second-order state-
space systems

d2

dt2 xr (t) = Ar xr (t) + Br
d
dt

ir (t) (6)

are available for each segment. Here, 1 ≤ r ≤ R is the
segment index, xr (t) ∈ RNd is a time-dependent state vector,
Ar ∈ R

Nd×Nd the system matrix, Br ∈ R
Nd×Nt the input

matrix, and ir (t) ∈ RNt the time-dependent excitation term.
The excitation term comprises modal port currents of the
waveguide ports of the rth segment. In close analogy, the
vector

vr (t) = BT
r xr (t) (7)

lists the time-dependent modal voltages of the rth segment.
The total number of 2D port modes of each segment is given
by Nt.

Following the Finite-Integration Technique (FIT) [10, 11],
the state matrix can be chosen to be

Ar = −M−1/2
ε,r CT

r M−1
µ,rCrM−1/2

ε,r , (8)

where the discrete representation of the curl operator is de-
noted by Cr . The matrices Mε,r and Mµ,r are diagonal and
comprise properties of the grid and averaged material pa-
rameters. The input matrix (or output matrix transposed) is
given by

Br =M−1/2
ε,r Rr . (9)

The columns of the matrix Rr comprise the electric field
distributions of the 2D port modes in a lexicographic order.
Note that the sampled 3D electric field distribution in the
rth segment is given in a lexicographic order by

er (t) = D−1
s,rM

−1/2
ε,r xr (t), (10)

where Ds,r is a diagonal matrix holding the lengths of the
edges of the primary grid.

Model-Order Reduction
The number of degrees of freedom of each state-space

model can be significantly reduced by means of model-order
reduction approaches. The reduction is conducted by ex-
pressing a reduced state vector xrd,r (t) ∈ RNdr using a semi-
orthogonal reduction matrix Wr ∈ R

Nd×Ndr :

xr (t) =Wr xrd,r (t). (11)
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As a matter of fact, there are various ways to construct the
reduction matrix. In the framework of this study, a proper
orthogonal decomposition is used which requires a finite set
of frequency-domain field distributions of the state-space
space system Eq. (6). It is a key property that the reduction
matrix has much more rows than columns, i.e. Nd � Ndr.
Replacing Eq. (11) in Eq. (6) and multiplying the obtained
equation with WT

r from the left hand side gives

d2

dt2 xrd,r (t) =WT
r ArWr︸      ︷︷      ︸
Ard,r

xrd,r (t) +WT
r Br︸ ︷︷ ︸

Brd,r

d
dt

ir (t) (12)

on account of the semi-orthogonality of the reduction matrix
(WT

r Wr = I).
Replacing Eq. (11) in Eq. (7) delivers the reduced-order

output equation

vr (t) = BT
r Wr︸ ︷︷ ︸
BT

rd,r

xrd,r (t). (13)

For instance, the model-order reduction allows for reducing
the number of degrees of freedom from Nd ≈ 5.5 × 106 to
Ndr ≈ 9.2 × 102 for the 1.5 GHz cavities and from Nd ≈

5.5 × 104 to Ndr ≈ 2.5 × 102 for the valves. Please refer to
column three of Table 3.1 in [15] for the number of degrees
of freedom for the remaining segments.

The computation of the reduction matrices was performed
on an Intel(R) Xeon(R) CPU E5-2687W @ 3.4 GHz with
256 GB of RAM using Windows Server 2012. The total
computation time to determine all reduction matrices based
on an accuracy criterion was approximately 6 d and 2 h. Col-
umn nine of Table 3.1 in [15] presents the computing times
for the construction of the reduction matrix for each of the
R = 13 segments.

Concatenation of State-Space Models
To concatenate the reduced-order state-space models of

the individual segments to a reduced-order state-space model
of the full structure, all state-space models are collated in
terms of a block system. For instance, this reads

xb(t) =
(
xT

rd,1(t) xT
rd,2(t) . . . xT

rd,r (t) . . . xT
rd,R(t)

)T
(14)

for the state vector of the block system. In a next step, this
block system is modified to ensure that Kirchhoff’s laws are
fulfilled for modal voltages and modal currents of ports to
be coupled. Following [6, Appendix C.2], Kirchhoff’s laws
result from continuity constraints of tangential electric and
magnetic fields. The incorporation of Kirchhoff’s laws into
the block state-space system delivers a state-space system
of the full structure. This system is again reduced to obtain

d2

dt2 xcr(t) = Acr xcr(t) + Bcr
d
dt

iext(t) (15)

with the output equation

vext(t) = BT
cr xcr(t). (16)

This system is a very compact description of the electro-
magnetic properties of the BESSY VSR cavity chain. Note
that the relationship between the reduced state-vector of the
concatenated system and the state-vector of the block system
is given by

xb(t) =Wc xcr(t), (17)

with the semi-orthogonal reduction matrix Wc ∈

R6,921×3,573 of the concatenated system.

Determination of Eigenmodes
As perfect magnetic conducting boundary conditions are

assumed on the surfaces of the external waveguide ports

iext(t) = 0 (18)

is enforced for the eigenmode computations. Note that modal
currents correspond to the tangential magnetic fields of the
respective 2D port modes on the port surfaces. Using the
constraint Eq. (18) and transforming the reduced-order state-
equation Eq. (15) of the complete structure into frequency
domain leads to the eigenvalue problem

Acr xcr︸︷︷︸
vcr,n

= −ω2︸︷︷︸
λn

xcr︸︷︷︸
vcr,n

. (19)

The eigenvectors vcr,n as well as the eigenvalues are real-
valued because of the symmetry of the matrix Acr. A com-
parison of constants in Eq. (19) gives the following relation
between resonant frequencies of the eigenmodes of the entire
chain and the eigenvalues of the system matrix:

fn =
ωn

2π
=

1
2π

√
−λn ∈ R. (20)

The frequencies are real-valued, because λn is smaller than
or equal to zero on account of the negative semi-definiteness
of Acr.

The field distributions of the nth eigenmode are deter-
mined based on the eigenvectors vcr,n. In a first step, the
state-vector of the block system used for the concatenation
is computed:

vb,n =Wcvcr,n. (21)

Then, the vector vb,n is partitioned following its definition
in Eq. (14). Subsequently, the reduced-order state vectors
vrd,r ,n of each segment are employed to reconstruct the elec-
tric field distribution of the nth mode in the rth segment:

er ,n = D−1
s,rM

−1/2
ε,r Wr vrd,r ,n. (22)

The sampled electric field distributions in er ,n are stored in
a lexicographic order and are transferred to a 3D field so
that they can be exported to ParaView [22]. A processing
script is used to automatically create field plots of all modes
with resonant frequencies in the interval from 500 MHz to
3.6 GHz. The field plots show the absolute value of the elec-
tric fields in two different cutplanes. Based on the electric
fields and the resonant frequencies, the coupling impedances
(r/Q)n are also determined.
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Determination of Quality Factors
The external quality factors of lossy modes in the BESSY

VSR cavity chain are determined using a perturbation ap-
proach. In a first step, the state-space model Eqs. (15) and
(16) of the lossless closed cavity chain is transferred to a
model with first-order derivatives with twice as many states
as the model with second-order derivatives:

d
dt

x̃cr(t) = Ãcr x̃cr(t) + B̃cr iext(t) (23)

with the corresponding output equation

vext(t) = B̃T
cr x̃cr(t). (24)

The matrices with the tilde directly result from the quantities
without the tilde. To account for open boundary conditions,
the external modal excitation currents are chosen based on
the modal voltages in frequency domain:

iext( jω) = −D−1
z ( jω) vext( jω), (25)

whereas Dz( jω) is the diagonal matrix holding the
frequency-dependent wave impedances of the 2D ports
modes at the external waveguide ports. Combining Eq. (25)
with the state-space system Eq. (23) and Eq. (24) and trans-
ferring the resulting statement into frequency domain gives
the nonlinear eigenvalue problem[

Ãcr − B̃T
cr D−1

z ( jωn︸︷︷︸
λn

) B̃cr

]
x̃cr,n = jωn︸︷︷︸

λn

x̃cr,n. (26)

The reader is referred to [23, 24] for a complete description
of the nonlinear eigenvalue problem arising from external
quality factor computations. The frequencies of the lossy
modes and their external quality factors are determined by

fext,n =
={λn}

2π
, Qext,n = −

={λn}

2<{λn}
. (27)

Note that the external quality factors are not directly linked
to the lossless eigenmodes as the introduction of losses leads
to a coupling of all eigenmodes. Consequently, the resonant
frequencies and field distributions for lossy modes are differ-
ent from lossless modes. Therefore, it is in general difficult
to directly connect external quality factors to eigenmodes
obeying Eq. (1) with the boundary conditions Eqs. (2) and
(3).

NUMERICAL RESULTS
The central result of the described computations is a

modal compendium listing the resonant frequencies, the
coupling impedances, and the field distributions of 1,576
eigenmodes which were found in the interval 500 MHz to
3.6 GHz. The modal compendium is part of [15] and com-
prises a large variety of modes with complex field patterns
such as cavity modes, multi-cavity modes, bellow modes or
combinations of these. Note that the complete and rigorous

Figure 2: Semilog plots of the external quality factors (top)
and the coupling impedances (bottom) of modes in the
BESSY VSR cavity chain.

discussion of the results is not feasible on account of the
large amount of generated data.

The diagram in the upper part of Figure 2 shows the ex-
ternal quality factors of modes in the BESSY VSR cavity
chain. It is worth to mention that the modes with excessively
large external quality factors (1011 . . . 1014) in the interval
578 MHz to 1.54 GHz are modes either being localized in
the collimators or close to the dielectric absorbers. Both
parts are assumed to be lossless in the computation, so that
the quality factors of confined modes in these segments are
estimated to be large. In practice however, these segments
are not lossless so their quality factors are significantly re-
duced as factors of these modes are governed by dielectric
and surface losses and not by external losses.

The diagram in the lower part of Figure 2 depicts the
coupling impedances. The TM01-π modes of the 1.5 GHz
resonators and the 1.75 GHz resonators with their (r/Q)n in
the order of 102 Ω are readily identifiable. On purpose, these
modes have the largest coupling impedances. In addition to
these modes, various modes with comparably large coupling
impedances in the order of 1 Ω to 10 Ω exist. These modes
are of potential danger for the operation of BESSY VSR,
in particular, if their resonant frequencies are close to the
∆ f = 250 MHz harmonics of the periodic BESSY VSR
current. Please refer to Figure 3 in [20] for the spectrum of
the BESSY VSR current.

For a review of the set of modes relevant for the operation
of BESSY VSR, the reader is referred to [15]. The follow-
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Figure 3: Absolute value of the electric field distribution of mode n = 888. The colorbar is presented in Figure 5(a). The
field distribution is predominantly located in the waveguide connecting the cavity with the collimating shielded bellow and
the higher-order mode waveguide absorber. The frequency of the mode is f SSC

888 = 2.9899 GHz and its coupling impedance
is (r/Q)SSC

888 ≈ 7.73 Ω.

(a) (b)

(c) (d)

Figure 4: Electric field distribution of mode n = 888 on
orthogonal cutplanes: (a) and (c) depict the result directly
delivered by CST whereas (b) and (d) show the result de-
livered by SSC. The respective colorbars are presented in
Figure 5. Note that the waveguides for the absorption of
higher-order modes are elongated by λ/4 in the direct run to
emulate perfect magnetic conducting boundary conditions
with perfect electric boundary conditions.

ing subsection is focused on mode n = 888 to conduct a
plausibility analysis of SSC.

Comparison of SSC with Direct Computation
Figure 3 depicts the absolute value of the electric field

distribution of mode n = 888 in the BESSY VSR cav-
ity chain. The mode has a comparably large coupling
impedance (r/Q)SSC

888 ≈ 7.7298 Ω and its frequency f SSC
888 =

2.9899 GHz is close to the ∆ f = 250 MHz harmonics of the
beam current. Thus, this mode is of interest although it is
expected to have a small external quality factor because of
its strong coupling to the higher-order mode absorbers.

Figure 3 shows that the field energy of the mode is con-
fined across two segments, namely at one 1.75 GHz res-
onator and at the collimating shielded bellow. Therefore, this
eigenmode is suitable to compare the SSC result with a direct
eigenmode computation using CST [16]. The direct eigen-
mode computation is performed for a geometry comprising
three cells of the 1.75 GHz resonator with higher-order mode
couplers, the collimating shielded bellow and one cell of the
next 1.75 GHz resonator with fundamental power coupler
and input coupler. Please refer Figure 4(a) and Figure 4(c)
for cutplanes of the structure considered by the direct eigen-

mode computation. Note that the higher-order waveguide
absorbers are slightly elongated by λ/4 = c/4/

√
f 2
888 − f 2

co,
because CST does not allow to specify perfect magnetic
boundary conditions within the computational domain. Here,
λ is the wavelength in the higher-order mode waveguide cou-
pler and fco the cutoff frequency of the fundamental waveg-
uide mode. A tetrahedral mesh with 218,444 tetrahedrons is
used to generate a discrete representation of Eq. (1) for the
substructure depicted in 4(a) and Figure 4(c). The tetrahe-
dral mesh is chosen because it is more suitable to discretize
the smooth curvatures of the geometry. Moreover, in general,
the properties of the eigenmodes should neither depend on
the discretization (tetrahedral or hexahedral) nor on the nu-
merical approach (direct or SSC). The eigenmode solver of
CST [16] is requested to search for 10 modes with resonant
frequencies larger than 2.98 GHz. The computational time
required to determine these 10 eigenmodes is approximately
13 min on an Intel(R) Xeon(R) CPU E5-2687W @ 3.4 GHz
with 256 GB of RAM using Windows Server 2012.

The resonant frequency arising from the direct computa-
tion is f CST

888 = 2.9863 GHz, so that the relative difference in
the frequency between direct computation and SSC amounts
to less than 1.2 × 10−3. The coupling impedance delivered
by the direct computation amounts to (r/Q)CST

888 = 8.8095 Ω,
so that a relative difference of ≈ 1.2 × 10−1 results.

SUMMARY AND CONCLUSION
The SSC scheme allows for the determination of eigen-

modes of long chains of cavities using workstations. The
key of the method is the combination of non-overlapping
domain decomposition with model-order reduction. The
scheme allows for the creation of eigenmode compendia,
which systematically comprise field distributions, resonant
frequencies, coupling impedances, and quality factors.

In addition to the various comparisons of SSC results
with direct computations for test structures (refer for instance
to [5, 6, 8, 9]), this contribution presents a comparison using
another structure. The confinement of the studied mode in
two segments of the chain allows for a comparison with a
direct computation using CST.

As a central result, the resonant frequency agrees very
well for this mode and the coupling impedance agrees rea-
sonably well. The differences are attributed to the different
discretization techniques (tetrahedral vs. hexahedral mesh)
and the different numerical approaches (direct vs. SSC).
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APPENDIX
Figure 5(a) presents the colorbar for the absolute values

of the electric field strength delivered by SSC whereas Fig-
ure 5(b) depicts the corresponding colorbar for the direct
computation using CST.

(a)

(b)

Figure 5: (a) Colorbar for SSC field plots. (b) Colorbar for
CST field plots.
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