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Abstract
This paper is a review of algorithms, applicable to parti-

cle accelerator simulation, which share the following two
characteristics: (1) they preserve to machine precision the
symplectic geometry of the particle dynamics, and (2) they
track the evolution of the self-field consistently with the
evolution of the charge distribution. This review includes,
but is not limited to, algorithms using a particle-in-cell dis-
cretization scheme. At the end of this review we discuss
to possibility to derived algorithms from an electrostatic
Hamiltonian.

INTRODUCTION

The conventional approach to simulating charged parti-
cle dynamics is to start from equations of motion, such as
Newton’s law and Poisson’s equation, and solve them approx-
imately using some standard ordinary or partial differential
equation solver. The truncation errors often lead to non-
physical artifacts, such as the non-conservation of phase
space volume, or the violation of conservation laws result-
ing from symmetries of the system (Noether’s theorem). By
contrast, symplectic integrators produce exactly stationary
solutions to an approximate action. Solutions are exact to
machine precision. Approximations are made up front, when
choosing the approximate Lagrangian or Hamiltonian, and
the corresponding approximate discrete action. Once the
physical description of the system is chosen, there is no more
arbitrariness in the arcane of the algorithm.

In accelerator physics, symplectic integrators are primar-
ily used to study long-term stability of orbits in storage
rings [1]. But their properties, the first of which is the lack
of arbitrariness after the choice of physics, make them desir-
able for the study of all conservative processes in particle
accelerators.

Self-consistent algorithms are, on the other hand, essential
to study betatron resonances, and by extension dynamical
aperture, in the presence of space-charge forces [2].

NOTATIONS

Throughout this paper a bold character always denotes
a vector, a vector field, or a matrix. As is the convention
in classical field theory, we use a dot to denote a partial
derivative with respect to time t. All formulas are given in
SI units, and we use c, ε0, and µ0 to denote respectively: the
speed of light, the vacuum permittivity, and permeability.
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FROM A SINGLE-PARTICLE
HAMILTONIAN

A first class of symplectic and self-consistent algorithms
may be derived from a single-particle Hamiltonian. For the
sake of demonstration we consider a set of (macro-)particles
whose dynamics is governed by the following Hamiltonian:

H(x,P; t) =
P2

2m
+ qφ(x) + qψ(x), (1)

where m is the mass of the particle, q is its charge, x and P are
its coordinate vector and associated canonically conjugated
momentum. The space-charge force derives from the self-
potential φ. The external focusing forces derive from the
scalar potential ψ. Since this Hamiltonian has no explicit
dependence on the independent variable t, and is the sum
of terms depending on either position or momentum alone,
the particle motion can be numerically integrated using a
concatenation of jolt maps [3]:(

I −
∆t
2

:
P2

2m
:
)
(I − ∆t q : φ + ψ :)

(
I −
∆t
2

:
P2

2m
:
)
.

(2)
This approximate map, accurate to second order in ∆t, is
symplectic if φ and ψ are functions of class C2. This is
shown by proving that the Jacobian matrix of the map is
symplectic [4]. Higher order integrators may be derived
from this second order one using Yoshida’s method [5].

With this approach the numerical method for solving the
equation of motion for the self-potential – namely Poisson’s
equation – is not obtained from a least action principle. This
leads to a certain level of arbitrariness in the way the self-
potential is to be computed.

FROM A DISCRETIZED LAGRANGIAN
Let us now consider methods based on variational inte-

grators derived from a Lagrangian. We will see that with
these methods all the dymanics – the evolution of the particle
distribution as well as the evolution of the self-field – are
obtained from Hamilton’s principle of stationary action.

Low’s Lagrangian
To illustrate this approach we start from the Lagrangian

for non-relativistic collisionless plasma proposed by Low [6].
In the electrostatic limit, where the self-field derives solely
from a scalar potential, it writes:

L(x, Ûx, φ; t) =∫
f (x0, Ûx0)LP(x(x0, Ûx0, t), Ûx(x0, Ûx0, t); t) dx0dÛx0

+
ε0
2

∫
|∇φ(x̄, t)|2dx̄ ,

(3)
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where LP has the form of a a single-particle Lagrangian:

LP(x, Ûx; t) =
m
2
| Ûx|2 − qφ(x, t) . (4)

x and Ûx are vector fields that map the initial coordinates
(x0, Ûx0) to the corresponding coordinates at time t. f is the
initial plasma density function. x̄ is a dummy integration
variable.

Note that the single particle Lagrangian can be made more
general by adding external fields term, and by replacing the
non-relativistic kinetic energy term by −m

√
1 − | Ûx|2/c2. For

the sake of simplicity, and without much loss of generality,
we choose to put aside these refinements.

Discretized Lagrangian
Let’s now discretize our system, i.e. approximate the con-

tinuous system by one with a finite number of degrees of
freedom. The choice of the discretization scheme, for both
the phase-space distribution f and real-space potential φ, is
arbitrary. For the sake of illustration we choose the following
particular particle-in-cell (PIC) scheme:

f (x0, Ûx0) =
∑
i

wi δ(x0 − xi0)δ(Ûx0 − vi0) , (5)

φ(x, t) =
∑
j

φ j(t)K(x − xj) , (6)

where wi is the weight of the ith macro-particle, xi0 and vi0
are its initial coordinates. xj is the position of j th node of
the PIC grid, and φ j(t) is the potential assigned to this node.
δ is the Dirac function. K is an interpolation kernel function
of class C2 which satisfies the requirement of norming [7]:∑

j

K(x − xj) = 1 , (7)

for all x. The choice of the kernel function is arbitrary. It
is usually chosen among positively defined even functions.
A noticeable example of kernel function is the Gaussian
wavelet used in COSY INFINITY (see section on ‘General
Particle Optical Elements’ in [8]). Suitable kernel functions
may also be constructed out of piecewise polynomials [9].
Note that this discretization scheme is similar, although not
identical, to the one used in Ref. [10].

Combining Eqs. (3) and (5) leads to the discretized La-
grangian, LD(x, Ûx, φ; t) =

m
2

∑
i

wi | Ûxi(t)|2 − q
∑
i

∑
j

φ jwiK(xi(t) − xj)

+
ε0
2

∫ (∑
j

φ j∇K(x̄ − xj)

)2
dx̄ ,

(8)

where xi(t) = x(xi0,v
i
0, t).

Discretized Action and Equations of Motion
The action S =

∫
LDdt can be approximated to first order

using a Riemann sum:

S ≈ SD = ∆t
∑
n

LD(xn,
xn+1 − xn
∆t

, φn; t) , (9)

where the subscript n denotes an evaluation at time t = n∆t.
Minimization of the action follows from the discrete Euler-
Lagrange equation (see section 1.1.2 of [11]) which leads to
the following equations of motion:

m
xi
n+1 − 2 xin + xi

n−1
∆t

= −q
∑
j

φ
j
n∇K(xin − xj) , (10)∑

k

φknM
jk = −

q
ε0
ρ
j
n , (11)

where:

M jk =

∫
K(x̄ − xj)∇2K(x̄ − xk) dx̄ , (12)

and

ρ
j
n =

∑
i

wiK(xin − xj) . (13)

Equation 10 is a discrete form of Newton’s equation with
the Lorentz force. To solve it numerically one may split this
second-order equation into two first order equations [12].
Equation 11 is obtained after integrating by parts the out-
come from the Euler-Lagrange equation, and dropping the
boundary term. It is a discrete form of Poisson’s equation.
It defines a linear relation between all φ j

n and ρjn and can be
solved by inverting the square matrix ℳ.

Equations 10 and 11 constitute a complete numerical in-
tegration scheme. Numerical integration leads to an exact
(to machine precision) solution of an approximate action,
which makes it a variational integrator. Variational integra-
tors are symplectic integrators [11]. As a matter of fact this
particular one is a symplectic Euler.

Higher-order variational integrators can be obtained using
higher-order approximations of S. A second order varia-
tional inegrator using a spectral discretization of φ has been
tested in one, two, and three-dimensional, and has demon-
strated excellent long-term stability [12].

FROM A DISCRETIZED HAMILTONIAN
Symplectic integrators are more commonly obtained from

a Hamiltonian [1]. Unfortunately the electrostatic Low La-
grangian in Eq. (3) is degenerate: it contains no explicit
dependence on Ûφ. This makes the application of a Legendre
transformation to this Lagrangian, if not impossible, at least
beyond the abilities of the authors.

In this section we will discuss two ways to overcome this
issue and obtain a Hamiltonian from different versions of
Low’s Lagrangian.

Electromagnetic Hamiltonian
Let us choose to use the Weyl gauge (also referred to as

temporal gauge) and set φ = 0. Low’s original Lagrangian
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becomes L(x, Ûx,A, ÛA; t) =∫
f (x0, Ûx0)

(m
2
| Ûx(x0, Ûx0, t)|2 + q Ûx · A(x, t)

)
dx0dÛx0

+
ε0
2

∫
| ÛA(x̄, t)|2 − |c∇ × A(x̄, t)|2 dx̄ .

(14)

Discretization and Legendre Transformation
Let’s use a PIC discretization scheme identical to Eq. (5),

only replacing φ by A. For compactness we write the dis-
cretized Lagrangian in matrix form:

LD =
m
2
Ûxᵀ w Ûx + q Ûxᵀ wK A +

ε0
2
ÛAᵀ 𝒦 ÛA − 1

2µ0
Aᵀ 𝒦

×
A

(15)

where x and A are now vectors with components xi and Aj

respectively; x contains Np elements (the number of macro-
particles), and A contains Ng elements (the number of grid
nodes). w is a diagonal matrix with components wi . The
components of the other matrices are:

K i j = K(xi(t) − xj) (16)

K jk =

∫
K(x̄ − xj)K(x̄ − xk) dx̄ (17)

K jk
×
=

∫
[∇K(x̄ − xj)]ᵀ

×
[∇K(x̄ − xk)]

×
dx̄ , (18)

where i and l go from 1 to Np, while j and k go from 1 to
Ng. Superscript ᵀ refers to the transpose operation. [ ]

×

denotes a skew matrix used to express the cross product as
a matrix multiplication ([a]

×
b = a × b).

The Legendre transformation writes:

HD = Ûxᵀ P + ÛAᵀ Y − LD , (19)

The components of the canonical momentum vectors are
Pi = ∂LD

∂Ûxi and Yj = ∂LD

∂ ÛA j , which are explicitly as:

P = mwÛx + qwKA (20)
Y = ε0𝒦 ÛA . (21)

The discretized Hamiltonian becomes:

HD =
1

2m
(P − qwKA)ᵀ w−1 (P − qwKA)

+
1

2ε0
Yᵀ 𝒦ᵀ−1

Y +
1

2µ0
Aᵀ 𝒦

×
A ,

(22)

and the associated canonical Poisson bracket writes {F,G} =∑
i

∂F
∂xi

∂G
∂Pi
−
∂F
∂Pi

∂G
∂xi
+

∑
j

∂F
∂Aj

∂G
∂Yj
−
∂F
∂Yj

∂G
∂Aj

.

(23)

Since HD is the sum of exactly solvable terms (for an ex-
plicit solution of the (P − qA)2-like term, see [13]), one can

build a second order symplectic integrator by concatenating
maps [3].

A similar symplectic integrator derived from the
Morrison-Marsden-Weinstein electromagnetic Hamilto-
nian [14–16] has been tested [9]. Note that a corresponding
variational integrator had previously been tested [17].

Electrostatic Hamiltonian
In most accelerator physics problems particles do not

move at relativistic speeds with respect to each other. In
such a case a scalar potential is sufficient to describe the
self-field. Keeping track of the three components of a vector
potential is wasteful.

We have already discussed the fact that an electrostatic
Hamiltonian cannot be obtained from Eq. (3). In this section
we show that it is however possible to obtain an electrostatic
Hamiltonian after changing the independent variable.

The action S associated with Eq. (3) writes S =∬
f
(m

2
| Ûx|2 − qφ(x, t)

)
dx0dÛx0dt +

ε0
2

∬
|∇φ|2dx̄dt.

(24)

We proceed in the first integral to a change of variable using
the substitution function:

g(x0, y0, t0, x ′0, y
′
0, t
′
0, z) = (x0, y0, z0, Ûx0, Ûy0, Ûz0, t) , (25)

where primes ′ denote partial derivative with respect to z.
The determinant of the Jacobian matrix det

(
Dg

)
= t ′/(t ′50 ),

where t ′0 =
∂t
∂z

��
z=0. Similarly we proceed in the second

integral to the change of variable given by:

h(x̄, ȳ, t̄, z) = (x̄, ȳ, z̄, t) , (26)

The determinant of the Jacobian of h is 1. The action be-
comes S =∫ [ ∫

f̂
(
m

x ′2 + y′2 + 1
2t ′

− q t ′φ̂
)

dx0dy0dt0dx ′0dy′0dt ′0

+
ε0
2

∫
|∇φ̂|2 dx̄dȳdt̄

]
dz

=

∫
Lz(x, y, t, φ̂, x ′, y′, t ′, φ̂′; z) dz ,

(27)
where:

f̂ (x0, y0, t0, x ′0, y
′
0, t
′
0, z) = f (x0, y0, z0, Ûx0, Ûy0, Ûz0, t)/t ′50 , (28)

and

φ̂(x0, y0, t0, x ′0, y
′
0, t
′
0, z) = φ(x0, y0, z0, Ûx0, Ûy0, Ûz0, t) . (29)

To simplify notations we drop the hats.
One notices that Lz depends explicitly on φ′, x ′, y′, and

t ′, enabling us to define the following canonical momentum

13th Int. Computational Accelerator Physics Conf. ICAP2018, Key West, FL, USA JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-ICAP2018-SUPAF04

SUPAF04
44

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

D-2 Dynamics – Spin, Precision, Space Charge



densities:

Π = ε0φ
′ (30)

Px = m f
x ′

t ′
(31)

Py = m f
y′

t ′
(32)

−E = −m f
x ′2 + y′2 + 1

2t ′2
− q f φ (33)

which in turn enables us to perform a Legendre transfor-
mation and obtain the following continuous electrostatic
Hamiltonian Hz =∫ √

2m f (E − q f φ) − P2
x − P2

y dx0dy0dt0dx ′0dy′0dt ′0

+
1
2

∫ (
Π2

ε0
− ε0 |∇⊥φ|

2
)

dx̄dȳdt̄ ,

(34)
where |∇⊥φ|2 = (∂xφ)2 + (∂yφ)2. An attempt to implement
an algorithm based on a discrete relativistic version of this
Hamiltonian is presented Ref. [18].

CONCLUSION
A variety of symplectic and self-consistent multi-particle

algorithms have been developed by both the accelerator
physics and the plasma physics community. They are su-
perior to most algorithm derived from equations of motion
as they guaranty that the symplectic nature of the particle
dynamics is conserved to machine precision. Some of them
guaranty the conservation of the symplectic nature of the
self-field dynamics as well. The algorithms discussed in this
paper were all derived from a collision-less picture, and as
such are unable to model non-Hamiltonian processes such
as intra-beam scattering.
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