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Abstract
The application of machine learning and nature-inspired

optimization methods, like for example genetic algorithms
(GA) and particle swarm optimization (PSO) can be found
in various scientific/technical areas. In recent years, those
approaches are finding application in accelerator physics to
a greater extent. In this report, nature-inspired optimization
as well as the machine learning will be shortly introduced
and their application to the accelerator facility at GSI/FAIR
will be presented. For the heavy-ion synchrotron SIS18 at
GSI, the multi-objective GA/PSO optimization resulted in a
significant improvement of multi-turn injection performance
and subsequent transmission for intense beams. An auto-
mated injection optimization with genetic algorithms at the
CRYRING@ESR ion storage ring has been performed. The
usage of machine learning for a beam diagnostic applica-
tion, where reconstruction of space-charge distorted beam
profiles from ionization profile monitors is performed, will
also be shown. First results and the experience gained will
be presented.

INTRODUCTION
FAIR—the Facility for Antiproton and Ion Research will

provide antiproton and ion beams of unprecedented inten-
sities as well as qualities to drive forefront heavy ion and
antimatter research [1]. The multi-turn injection (MTI) into
heavy-ion synchrotron SIS18 is one of the bottlenecks for
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providing unprecedented intensities. The loss-induced vac-
uum degradation and associated life-time reduction for inter-
mediate charge state ions is one of the key intensity limiting
factors for SIS18 [2]. Beam loss during injection can trigger
the pressure bump instability. An optimized injection can re-
lax the dynamic vacuum problem, but is also crucial to reach
the synchrotron intensity limit by a large multiplication of
the injected current [3].

The complexity of the FAIR facility demands a high level
of automation to keep anticipated manpower requirements
within acceptable levels, as shown in [4]. An example of
complexity is the High Energy Beam Transport System of
FAIR which forms a complex system connecting among
other things seven storage rings and experiment caves and
has a total length of 2350 metres [5]. An automatized ma-
chine based optimization would improve the time for opti-
mization and control of HEBT.

In the frame of the Swedish in-kind contribution to the
FAIR project the storage ring CRYRING@ESR is planned
to be used for experiments with low-energy ions and an-
tiprotons. The ring is already installed in the existing GSI
target hall and commissioning has started in 2015 [6–8].
Since CRYRING@ESR has its own local injector it can
be used stand-alone for testing novel technical develop-
ments like automatized configuration of beam line devices.
A semi-automatized optimization has been already pre-
formed at the CRYRING in Sweden [9]. Figure 1 shows
the CRYRING@ESR and is local injector. Over the second
transfer line the CRYRING@ESR can also receive beams
form the experimental storage ring ESR.

Figure 1: CRYRING@ESR injection from the local injector has been online optimized with an evolutionary algorithm.
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For the optimization and control of synchrotrons the
knowledge of beam parameters is a key ingredient. Ion-
ization profile monitors play an important role in non-
destructive measurements of the transverse beam profile.
They make use of residual gas ionization by the particle
beam and collect the ionization products via appropriate
guiding fields. However, for the foreseen intensities at heavy-
ion synchrotron SIS100 for some beams a profile distortion
is expected to be visible. Here the application of machine
learning allows the reconstructing of the beam profiles with
simulation supported training.

NATURE-INSPIRED OPTIMIZATION
Nature-inspired optimization algorithms often perform

well approximating solutions to all types of problems be-
cause they ideally do not make any assumption about the
underlying fitness landscape. The fitness determines the
quality of the solution and determines the probability of its
survival for the next optimization step. The fitness is eval-
uated by an objective function, a simulation code or a real
running system. In many real-life problems, multi-quantities
have to be optimized. In addition, these quantities can be
contradicting and there is more than one equally valid so-
lution. These solutions form a so-called Pareto front (PA
front) in the solution space. A solution is Pareto optimal if
it is not dominated by any other solution. By using a non-
dominated selection algorithm one tries to find solutions
near the optimal Pareto set.

Evolutionary algorithms
An evolutionary algorithm (EA) is inspired by biological

evolution, such as reproduction, mutation, recombination,
and selection. Genetic algorithms (GA) is the most popular
type of EA. In GA terminology, a solution vector is called
an individual and represents a set of variables; one variable
is a gene. A group of individuals form a population, the
following child populations are counted in generations. The
first population is created randomly. The crossover operator
exchanges variables between two individuals - the parents
- to discover with their offspring promising areas in the so-
lution space (exploration). For the optimization within a
promising area, the mutation operator changes randomly
the characteristics of individuals on the gene level (exploita-
tion). Reproduction of individuals for the next generation
involves selection. During optimization the most promising
individuals are chosen to create the next generation. By
allowing individuals with poor fitness to take part in the
creation process the population is prevented to be dominated
by a single individual. The most popular techniques for
a single-objective optimization are proportional selection,
ranking and tournament selection [10, 11].

Particle swarm optimization
The initial inspiration for the Particle Swarm optimization

(PSO) came from the “graceful but unpredictable choreog-
raphy of a bird flock” and is a example of alternative algo-

Figure 2: The heavy-ion synchrotron SIS18 and its injectors.

rithms. The key to the swarm success liens in social influence
and learning. Each individual’s behavior is influenced by
its own personal experience and the social standard [11].
Within a swarm, each individual refers to a point in the vari-
able space. It is updated by adding a velocity depending on
the personal experience and the socially swarm influenced.
The “nostalgia” in the individual tends to return to a place
it encountered in the past that best fulfilled the objectives
reflected by the personal best pbest. Simultaneous, the indi-
viduals seek to attain publicized knowledge or social norms,
reflected by the best position ever for the entire swarm gbest.
The movements of the swarm a guide by improved positions,
which are updated during the optimization. Including in ad-
dition stochastic elements in the algorithm allows to search
widely and hopefully finding a satisfactory solution. PSO
has shown faster convergence than GA optimization [11].

INJECTION OPTIMIZATION
SIS18 (Figure 2) will serve as a booster for SIS100 in the

FAIR facility to provide ion beams of unprecedented inten-
sities and qualities. An optimized interface between injector
linacs and synchrotron is mandatory to achieve this goal. The
new FAIR proton linac (pLINAC) will provide the high inten-
sity primary proton beam for the production of antiprotons.
The existing GSI heavy ion linac (UNILAC) is able to deliver
world record uranium beam intensities for injection into the
SIS18, but it is not suitable for FAIR operation. Therefore an
upgrade program is planned to replace the post-stripper sec-
tion. An evolutionary algorithm based optimization of the
multi-turn injection (MTI) of the SIS18 has been performed
to define the interface parameters for UNILAC and pLINAC.
The goal of the optimization is to stack the beamlets injected
from the injector in the horizontal phase space until the syn-
chrotron intensity limit is reached. Thereby injection losses
on the septum or acceptance have to be minimized to prevent
a synchrotron performance reduction to due loss induced
vacuum degradation [3]. However, the required MTI bril-
liance should be in a reachable value frame for the injector
linac. As MTI has to fulfill Liouville’s theorem, four bumper
magnets create a time variable closed orbit bump such that
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Figure 3: Snapshot of a MTI simulation with loss. The red
line indicates the septum and dashed line the acceptance.

the injection septum deflects the next incoming beamlet into
available horizontal phase space close to the formerly in-
jected beamlets. For effective adaptation to the free phase
space, for instance, an exponential bump reduction can be
chosen. During the nature-inspired optimization the param-
eters on which the MTI depends are altered in consideration
of the limiting technical and physical conditions to find an
excellent MTI performance. The MTI performance depends
on injector emittance and current, position and angular of
the incoming beam, the closed orbit at the septum, horizon-
tal tune, miss-match of the incoming beam and the orbit
bump reduction. For the optimization the Distributed Evo-
lutionary Algorithms in Python (DEAP) [12] together with
pyORBIT has been used. The SIS18 MTI model has been
implemented in the particle tracking code pyORBIT—the
Python implementation of ORBIT (Objective Ring Beam
Injection and Tracking) code—and was carefully validated
against experiments [13–15]. Figure 3 shows a snapshot of
a MTI simulation with loss in normalized coordinates. The
loss areas—inner and outside of the septum as well as the
acceptance—are visible. The inner beamlets lost particles at
septum earlier during the injection process and therefore not
overlap. The injected beams are spirally arranged. The first
injected beams are sitting in the center of the spiral next due
to the closed orbit indicated by the black dotted. Figure 4 il-
lustrates the evolution of the injection loss obtained from the
GA for different numbers of injected turns. The GA finds a
better set of parameters than the previous simulation studies
(indicated by the dashed lines [14]). The fact that a longer
injection time leads to higher losses also holds for the GA
optimization if the available acceptance is filled. However,
especially in these cases GA discovers a much better solu-
tion. The dependence of the gain factor on the injection loss
is of particular interest due to the vacuum degradation prob-
lem. In order to define the relationship between both, the
gain factor has been included as an optimization objective,
i.e. to find a 2D Pareto front of both. Figure 5 shows that
multi-objectives genetic algorithms (MOGA) finds a much
better set of parameters for an improved MTI performance
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Figure 4: The evolution of loss for injected emittance of
7 mm·mrad. GA found a much better injection parameter
setting for a low loss injection than the previous simulation
studies (dashed lines).
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Figure 5: The PA front for gain factor and MTI loss. GA
found a much better PA front than the previous studies.

than the previous simulation studies [14]. The influence of
space charge on the MTI performance optimization with
MOGA is significant even if the discovered PA fronts are
similar: The discovered MTI parameters are different with
space charge. For the layout of the injector upgrade and the
new proton injector is crucial to known the injection depen-
dence on emittance. The demands on the injector could be
relaxed if a sufficient MTI performance with a large injection
emittance can be discovered. Previous MTI optimization
studies [14, 16] clearly demonstrate that the horizontal emit-
tance of the incoming beam has a significant impact on
MTI performance. The smaller the injected emittance is,
the better the MTI performance gets, which is contradict-
ing to relaxation of the injector demands. A reduction of
the horizontal emittance can be achieved e.g. by horizontal
collimation [16] or by a round-to-flat transformation [15].
Figure 6 shows in accordance with MTI model and previ-
ous studies the trade-off between the objectives over a wide
range of parameter variations, which can be summarized
as follows: no loss means small injected emittance and low
gain factor; a high gain factor implies small emittance with
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Figure 6: The 3D Pareto front for a simultaneously GA
optimization of gain factor, loss and emittance. On the right
axes the require injector current is shown to reach the space
charge limit in the SIS18.

medium loss; and large emittance means very large loss and
small gain factors. This trade-off is a direct consequence
of Liouville’s theorem. The obtained results for single and
double objective optimization are located also on the 3D
PA front. Optimization with multiobjective particle swarm
(MOPSA) shown similar result with fast convergence. A 3D
Pareto front for proton injector has generated shown in [17].
Outcome of this optimization and heuristic analyze of the
MTI demonstrate, that a low-loss injection to fill SIS18 up
to the space charge limit for several emittance over many
turns for various proton currents could be achieved.

ONLINE INJECTION OPTIMIZATION
The multi-turn injection of the CRYRING@ESR from

the local injector has been online optimized with a genetic
algorithm. The aim of the automatized optimization was to
maximize the beam current stored in the CRYRING@ESR.
The beam current has been measured with the Schottky diag-
nose in the CRYRING. An end-user application exploiting
the genetic algorithm framework Jenetics [18] to optimize
unknown beamline settings through the Java based FAIR
control system has been implemented [19]. Jenetics is an
end-user ready software library implementing an genetic,
evolutionary algorithm, written in modern day Java. There-
fore the choice to use Jenetics was obvious although faster
algorithm are known. The Jenetics algorithm allows inde-
pendent variation of the merging dipole magnet and the
quadrupoles strengths in the transfer line as well the septa,
steerer strengths, and the closed orbit defined by the ring
dipols. The result of the successful evolutionary algorithm
optimization performance is presented in Figures 7. Shown
are two cases of converged genetic scans for the recom-
bination probability of 0.5 and 0.8. The population size
was 50 and the offspring fraction 0.5. The tournament size
of 15 has been chosen rather large to reach a fast conver-
gence. For large tournament size, weak individuals have
less chance of being selected. The first population is created

randomly forming a range around 10–15% of known good
values (e.g. from earlier manual settings or beam optics cal-
culations). The performance of the ion source, especially un-
stable plasma conditions play a crucial role, as it introduces
non-deterministic transmission fluctuations which cannot
be coped with by the algorithm without further measures.
Therefore for each genetic scan step an averaging over ten
measurements has been performed. Both scans reached after
about 1.5 hours optimization time previous achieved trans-
mission. At present, the time-domain performance is limited
by the FAIR control system. Hence, removing performance
bottlenecks in the FAIR control system code stack would be
a key to fully enable this method’s power.

MACHINE LEARNING
A principal characteristic of Machine Leaning (ML) is to

implicitly deduce a set of rules from given data, mapping
specific input to output, relieving the user from this tedious
task. As such ML is especially suited for problems whose
solutions require either a lot of manual fine-tuning or in-
volve long lists of (potentially unknown) rules. Relevant for
the presented problem is the later case, where supervised
machine learning consisting of regression models is used
to predict continuous variables from the given data. Super-
vised ML covers many different algorithms with varying
complexity, from linear approximations like Linear Regres-
sion (LR) up to “biologically inspired” Artificial Neural
Networks (ANN) [20].

Linear Regression
Linear regression is a linear approach modelling the rela-

tionship between the scalar dependent variable and one or
more explanatory variables. In linear regression, the rela-
tionship is modeled using linear predictor functions whose
unknown model parameters are estimated from the data.
The least squares approach is often used for fitting linear
regression models.

Artificial Neural Networks
Artificial neural networks (ANN) are computing systems

vaguely inspired by the biological neural networks found
in animal brains. The most basic form of ANN typically
utilized in supervised learning problems is a fully-connected
feed-forward Multi-Layer Perceptron (MLP). It is a specific
ANN architecture which is represented by consecutive layers
of nodes where all nodes of two consecutive layers are con-
nected to each other. Each node sums all its weighted inputs
and transforms the result using an activation function. The
activation function should be non-linear in order to represent
non-linearities in the data and it must be differentiable in
order to comply with the fitting procedure. Weights are usu-
ally randomly initialized and then iteratively updated during
the fitting procedure in order to minimize the selected loss
function.
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Figure 7: Converged genetic scan driving ten parameters for two different recombination probability. The goal of the
optimization has been to maximize the CRYRING@ESR MTI performance. The scans reached the final value after
four generations and reached previous good transmission after 89 (upper scan) and 97 minutes (below scan). For each
optimization steps an averaging over ten measurements has been performed.

IPM PROFILE RECONSTRUCTION

The principle of IPMs is the following; the primary beam
ionizes the residual gas and the ionized particles (ions or
electrons) are extracted via electric fields, sometimes in
conjunction with magnetic fields to confine the movement
of ionized particles in the plane transverse to the electric
field [21]. In the ideal case the ionized particles would move
on a straight path towards the detector and the profile of the
extracted particles reflects the transverse profile of the pri-
mary beam. The electromagnetic fields of the primary beam
can affect the trajectory of particle movement towards the
detector, see Figure 8. As a consequence the beam profile
can be significantly deformed compared to the unimpaired
wire scanner measurements. Several attempts have been
made to correct or describe such effects parametrically, but
no satisfactory analytic procedure was found. At that point
a machine learning based approach reliant on good simula-

tion model of the IPM along with space charge effects was
performed.

The Virtual-IPM simulation tool was used for simulat-
ing the movement of electrons inside the IPM region for a
typical LHC case [22], where the beam electric field leads
to major distortion. The simulated profiles were binned
corresponding to the resolution of an acquisition system
based on hybrid-pixel detector [23]. Together with the bunch
length and the bunch intensity this data were used for fit-
ting various ML models. Even the simple linear regression
model showed very promising results for the beam width
reconstruction [22]. The complex artificial neural networks
can reconstructed the whole beam profiles as shown in Fig-
ure 9 [24].

CONCLUSION AND OUTLOOK
A fast beam dynamics simulation model has been de-

veloped and used together with a multi-objective genetic
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Figure 8: In the ideal case the ionized particles would move
on straight lines towards the detector. However the elec-
tromagnetic field of the beam can influence the particles
movement as shown.

Figure 9: Simulation of profile distortion due to space charge
using Virtual IPM together with the ANN corrected profile.

algorithm to optimize the multi-turn injection into SIS18.
A loss-free or low-loss injection for several emittance over
many turns were identified. Space charge results in a simi-
lar PA front, but with different injection settings. With the
optimized multi-turn injection a range of injector brilliance
could be defined. This crucial information gives more flexi-
bility for the layout of the SIS18 injectors.
An online optimization of multi-turn injection into the stor-
age ring CRYRING@ESR has been presented. After 1.5
hours of optimization time previous transmission could be
reached. The nature-inspired optimization has potential to
reduce the manpower requirements and variations of quality
performance due to the manual procedure. Looking forward,
the algorithm shall be applied to SIS18.
A novel method for resolving IPM profile distortion under
the influence of magnetic guiding fields based on machine

learning has been presented. The first investigations, using
simulated data, yield promising results. Next steps include
estimation of influence of error sources on predictions, opti-
mization of model selection and application of the method
to measured data. The method has a potential to extend
usability and reduce cost of IPMs for high brightness beams.
The application of machine learning to time-domain signals
like the longitudinal Schottky signals is under investigation.
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