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INTRODUCTION
In this presentation we describe some numerical and ana-

lytical results from our work on the spin polarization in high
energy electron storage rings aimed towards the proposed
Future Circular Collider (FCC-ee) and the proposed Circular
Electron Positron Collider (CEPC). Photon emission in syn-
chrotron radiation imparts a stochastic element (“noise”) into
particle motion and there are also damping effects. However,
instead of considering single particles it is often convenient
to model the stochastic photon emission as a Gaussian white
noise process and to then study the evolution of the particle
density in phase space with a Fokker-Planck equation.

The noise in trajectories together with the spin-orbit cou-
pling embodied in the Thomas-BMT equation of spin pre-
cession [1], can cause spin diffusion and thus depolarization.
On the other hand photon emission can lead to a build up
of polarization via spin flip. This is the Sokolov-Ternov pro-
cess [2]. The attainable polarization is the outcome of the
balance of the two effects.

So far, analytical estimates of the attainable polarization
have been based on the so-called Derbenev-Kondratenko
formulas [3, 4]. In analogy with studies of the trajectories
of single particles, that approach leans towards the study
of single spins and relies in part on plausible assumptions
grounded in deep physical intuition. However, just as with
particle motion it would be convenient to have a treatment
of the Fokker-Planck (F-P) kind and thereby minimize the
reliance on assumptions. But the polarization at a point in
phase space cannot be handled in that way since polarization
is not a density. Nevertheless a density is available, namely
the density in phase space of the spin angular momentum and
with this there is a generalization of the F-P equation which
we call the Bloch equation. We use that name to reflect
the analogy with equations for magnetization in condensed
matter [5]. In fact the Bloch equation works with the so-
called polarization density. This is proportional to the spin
angular momentum density per particle in phase space. With
this we can calculate the polarization vector of the bunch.

Thus we study the initial value problem of what we call the
full Bloch equation (FBE). The FBE takes into account non
spin-flip and spin-flip effects due to synchrotron radiation
including the spin-diffusion effects and the Sokolov-Ternov
effect with its Baier-Katkov generalization. The FBE was
introduced by Derbenev and Kondratenko in 1975 [6] as a
generalization to the whole phase space (with its noisy tra-
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jectories) of the Baier-Katkov-Strakhovenko (BKS) equation
which just describes the evolution of polarization by spin flip
along a single trajectory [7]. The FBE is a system of three
F-P equations coupled by a Thomas-BMT term and the BKS
terms but uncoupled within the F-P terms. By neglecting
the spin flip terms in the FBE we obtain what we call the
reduced Bloch equation (RBE). The RBE approximation is
sufficient for computing the physically interesting depolar-
ization time and it shares the terms with the FBE that are
challenging to discretize. Thus, here we only consider the
discretization of the RBE.

Our approach has three parts. First we approximate the
RBE analytically using the method of averaging, resulting
in an average RBE which allows us to use large time steps.
The minimum length of the time interval of interest is of
the order of the orbital damping times. Secondly, the phase
space coordinates of the average RBE come in d = {1,2,3}
pairs of polar-radial coordinates that we discretize using a
Fourier-Chebyshev pseudospectral approach. The averaging
decouples the parabolic and mode coupling terms allowing
for a parallel implementation with only local communication.
Thirdly, we further exploit the decoupling by evolving the
resulting system of ODEs by an implicit-explicit (ARK)
method. Parabolic operators are treated implicitly and can
be inverted rapidly due to the decoupling. If each of the
d angle variables is discretized on a grid of M grid points
and if each of the d radial variables is discretized on a grid
of N grid points then the total number of operations for
each time step scales, to leading order, as O(NdqMd) where
1 ≤ q ≤ 3, depending on the algorithms used for the linear
solve. For Gaussian elimination q = 3. Details and more
results have been presented in this meeting by O.Beznosov,
see [8].

The main issues for very high energy rings like the FCC-
ee and CEPC are: (i) Can one get polarization, (ii) what
are the theoretical limits of the polarization? We believe
that the FBE offers a more complete starting point for very
high energy rings than the Derbenev-Kondratenko formu-
las. See [9] for a recent review of polarization history and
phenomenology.

RBE IN LAB FRAME

In a semiclassical probabilistic description of an electron
bunch the spin-orbit dynamics is described by the spin-1/2
Wigner function (also called the Stratonovich function) ρ
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written as

ρ(t, z) =
1
2
( f (t, z)I2×2 + ®σ · ®η(t, z)) , (1)

where f is the classical phase-space density normalized by∫
f (t, z)dz = 1 and ®η is the polarization density of the bunch

and thus proportional to the spin angular momentum density.
Here z = (r, p) where r and p are the position and momen-
tum vectors of the phase space and t is the time. Also, ®σ is
the vector of the three Pauli matrices. Thus f = Tr[ρ] and
®η = Tr[ρ®σ]. The polarization vector ®P(t) of the bunch is
®P(t) =

∫
®η(t, z)dz. Here and in the following we use arrows

on spin-related quantities and no arrows on other quantities.
Moreover the spin-related quantities will be represented by
column matrices. When the particle motion is governed just
by a Hamiltonian, as in the case of protons, the phase-space
density is conserved along a trajectory so that the polariza-
tion density obeys the Thomas-BMT equation along each
trajectory. However, if the particles are subject to noise and
damping due to synchrotron radiation, the evolution of the
density of particles in phase space is more complicated. But
as advertised above it can be handled with a F-P formalism.
Then by neglecting collective effects and after several other
approximations, ρ evolves via

∂t f = LFP(t, z) f , (2)
∂t ®η = LFP(t, z)®η +Ω(t, z)®η + G(t, z)®η

+®g(t, z) f + ®L(t, z) f (3)

where (2) is the F-P equation for the orbital density and (3)
is the FBE mentioned above, both in the lab frame, i.e., in
cartesian coordinates. The F-P operator LFP is the linear
second-order partial differential operator commonly used
for electron synchrotrons and storage rings [10, Section
2.5.4], [11, 12]. The skew-symmetric matrix Ω(t, z) in the
FBE takes into account the Thomas-BMT spin-precession
effect. The terms G ®η, ®g f and ®L f take into account spin
flips due to synchrotron radiation. In particular they include
the Sokolov-Ternov effect and its Baier-Katkov correction
the latter belonging to G ®η. As usual, since it is minuscule
compared to all other forces, the Stern-Gerlach effect from
the spin onto the orbit is neglected in (2). The explicit forms
of LFP, Ω,G, ®g and ®L are given in [6].

If we neglect the spin flip terms in the FBE then (3) sim-
plifies to

∂t ®η = LFP(t, z)®η +Ω(t, z)®η (4)

The RBE (4) just takes care of spin diffusion due to the
orbital motion.

The Equations (2) and (3) can be derived from quantum
electrodynamics, followed by making the semiclassical ap-
proximation of the Foldy-Wouthuysen transformation of the
Dirac Hamiltonian and finally by making a Markov approx-
imation [13]. We stress however, that the RBE (4) can be
derived purely classically as in [14]. In fact, we show again
how to do this at the end of the next section.

RBE IN THE BEAM FRAME
In the beam frame, i.e., in accelerator coordinates, the

RBE (4) becomes

∂θ ®ηY = (LY + LY ,TBMT )®ηY (5)

where θ is the accelerator azimuth,

LY = −
6∑
j=1

∂yj

(
A(θ)y

)
j

+
1
2
ωY (θ)∂

2
y6
,

LY ,TBMT ®ηY = ΩY (θ, y)®ηY

and whereA(θ) is a 6×6 matrix encapsulating radiationless
motion and the deterministic effects of synchrotron radiation.
Also ΩY (θ, y) is the Thomas-BMT term and it is a skew-
symmetric 3×3 matrix linear in y andωY (θ) is the magnitude
of the noise. Note that A(θ), ΩY (θ, y) and ωY (θ) are 2π-
periodic in θ. Given the beam frame polarization density
®ηY the beam frame polarization vector ®P(θ) of the bunch at
azimuth θ is

®P(θ) =
∫

dy ®ηY (θ, y) (6)

Our central computational focus in this paper is the RBE (5)
with ®P(θ) being a quantity of interest. To proceed with this
it is important that (5) has an underlying system of Langevin
equations and thus an underlying F-P equation. In fact the
system of Langevin equations is

Y ′ = A(θ)Y +
√
ωY (θ)e6ξ(θ) , (7)

®S′ = ΩY (θ,Y ) ®S (8)

where ξ is a version of the white noise process, e6 =
(0,0,0,0,0,1)T and ®S is the single-particle spin expectation
value. Note that (7) can be written as the Ito stochastic dif-
ferential equation: dY = A(θ)Y dθ +

√
ωY (θ)e6dW which

is linear in the narrow sense and thus defines a Gaussian
process Y if Y (0) is Gaussian. In principle (5) could be ob-
tained by transforming (4) and the coefficients A, ΩY and
ω from the lab frame to the beam frame, However this is
not necessary since (7) and (8) and the A,ΩY and ω can be
found in virtually every exposition on spin in high-energy
electron storage rings, e.g., [15]. Note that these expositions
make some approximations. We use [15] which involves
linearizing w.r.t. y as can be seen in (7) and (8). For (5) see
also [14].

The F-P equation for the Gaussian process Y is

∂θPY = LYPY (9)

For getting (9) from (7) see [16–18]. With (7) and (8) the
evolution equation for the spin-orbit joint probability density
PYS = PYS(θ, y, ®s) is the following F-P equation:

∂θPYS = LYPYS −
3∑
j=1

∂sj

((
ΩY (θ, y)®s

)
j

PYS

)
(10)
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Note that PY is related to PYS by

PY (θ, y) =

∫
ds PYS(θ, y, ®s) (11)

where the integral is over R3. Note also that since the spin
variable ®S is normalized, PYS is supported on the 2-sphere,
i.e., where |®s | = 1. Hence PYS(θ, y, ®s) is proportional to
δ(|®s | − 1). By integrating (10) over ®s one recovers (9). The
polarization density ®ηY corresponding to PYS is defined by

®ηY (θ, y) =

∫
ds®s PYS(θ, y, ®s) (12)

The RBE (5) follows from (10) by differentiating (12) w.r.t.
θ.

APPROXIMATING THE BEAM FRAME
RBE BY THE METHOD OF AVERAGING
Because the coefficients of LY are θ-dependent, the RBE

(5) is numerically quite complex. So we first approximate
it analytically in order to solve it numerically. We will find
this approximate RBE by refining the averaging technique
presented by Ellison, Mais and Ripken in the Accelerator
Handbook [19, Section 2.1.4]. This refinement allows us
to use that method of averaging to approximate the system
of Langevin Equations (7). We just give a sketch here (a
detailed account will be published elsewhere [20]). Note
that both [19, Section 2.1.4] and our refinement are restricted
to first-order averaging. We first rewrite (7) as

Y ′ = (A(θ) + εδA(θ))Y +
√
ε
√
ω(θ)e6ξ(θ) (13)

with
√
ε
√
ω(θ) =

√
ωY (θ), where A(θ) is the Hamiltonian

part of A(θ) and ε is a perturbation parameter, and where
εδA(θ) represents the part ofA(θ) associated with damping
effects due to synchrotron radiation and cavities (see, e.g.,
[15, eq. 5.3]). The mean mY and covariance matrix KY of Y
satisfy the ODEs

m′Y = (A(θ) + εδA(θ))mY , (14)
K ′Y = (A(θ) + εδA(θ))KY + KY (A(θ) + εδA(θ))T

+εω(θ)e6eT6 (15)

In (15) the δA terms and the ω are balanced at O(ε) and
so can be treated together in first order perturbation theory.
This is the reason for the

√
ε in (13). However this balance

is also physical as the damping and diffusion come from the
same source and the cavities replenish the energy loss.

To apply the method of averaging to (14) and (15) we must
transform them to a standard form for averaging. We do this
by using a fundamental solution matrix X of the unperturbed
ε = 0 part of (13) and (14), i.e.,

X ′ = A(θ)X (16)

We thus transform Y , mY and KY into U, mU and KU via

Y = X(θ)U, mY = X(θ)mU,KY = X(θ)KU XT (θ) (17)

and (13), (14) and (15) are transformed to

U ′ = εD(θ)U +
√
ε
√
ω(θ)X−1(θ)e6ξ(θ) (18)

m′U = εD(θ)mU , (19)
K ′U = ε(D(θ)KU + KUD

T (θ)) + εE(θ) (20)

Here D(θ) and E(θ) are defined by

D(θ) = X−1(θ)δA(θ)X(θ) , (21)
E(θ) = ω(θ)X−1(θ)e6eT6 X−T (θ) (22)

Of course, (18)–(20) carry the same information as (13)–
(15).

Now, applying the method of averaging to (19) and (20),
we obtain

m′V = εD̄mV , (23)
K ′V = ε(D̄KV + KV D̄

T ) + ε Ē (24)

where the bar denotes θ-averaging, i.e., the operation
limT→∞(1/T)

∫ T

0 dθ · · · . For physically reasonable A each
fundamental matrix X is a quasiperiodic function whenceD
and E are quasiperiodic functions so that their time averages
D̄ and Ē exist. By averaging theory |mU (θ) − mV (θ)| ≤
C1(T)ε and |KU (θ) − KV (θ)| ≤ C2(T)ε for 0 ≤ θ ≤ T/ε
where T is a constant (see also [21–24]) and ε small. How-
ever, we expect to be able to show that these estimates are
uniformly valid on [0,∞), since the long time behavior is
exact.

The key point now is that every Gaussian process V , whose
mean mV and covariance matrix KV satisfy the ODEs (23)
and (24), satisfies the system of Langevin equations

V ′ = εD̄V +
√
εB(ξ1, ..., ξk)

T (25)

Here ξ1, ..., ξk are statistically independent versions of the
white noise process and B is a 6 × k matrix which satisfies

BBT = Ē (26)

with k = rank(Ē). Since mU (θ) = mV (θ) + O(ε) and
KU (θ) = KV (θ) + O(ε) we get U(θ) ≈ V(θ). In particu-
lar X−1(θ)V(θ) ≈ Y (θ) (more details will be in [20]). Con-
versely, the mean vector mV and covariance matrix KV of
every V in (25) satisfy the ODEs (23) and (24).

It’s likely that stochastic averaging techniques [25, and
references therein] can be applied directly to (18) giving (25)
as an approximation and we are looking into that. However,
because (18) is linear and defines a Gaussian process, the
theory for getting to (25) from the ODEs for the moments
could not be simpler, even though it is indirect.

To include the spin we extend (25) to the spin-orbit system
of Langevin equations

V ′ = εD̄V +
√
εB(ξ1, ..., ξk)

T , (27)
®S′ = ΩY (θ,X(θ)V) ®S (28)
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With (27) and (28) the evolution equation for the spin-orbit
probability density PVS = PVS(θ,v, ®s) is the following F-P
equation:

∂θPVS = LVPVS −

3∑
j=1

∂sj

((
ΩY (θ,X(θ)v)®s

)
j

PVS

)
(29)

where

LV = −ε

6∑
j=1

∂v j (D̄v)j +
ε

2

6∑
i, j=1
Ēi j∂vi ∂v j (30)

The polarization density ®ηV corresponding to PVS is defined
by

®ηV (θ,v) =
∫

ds®s PVS(θ,v, ®s) (31)

so that by (29), the RBE is

∂θ ®ηV = (LV + LV ,TBMT )®ηV (32)

where

LV ,TBMT ®ηV = ΩY (θ,X(θ)v)®ηV (33)

The coefficients of LV are θ-independent for every choice
of X and this is necessary for our numerical method. Note
that the averaging which leads to (32) affects only the orbital
variables. It was justified by using the fact that (27) is linear
whence it defines a Gaussian process when the initial con-
dition is Gaussian. This allowed us to apply the averaging
approach to the first and second moments rather than the
Langevin equation itself. We cannot apply this approach to
the combined spin-orbit dynamics in (27)-(28) because (28)
has a quadratic nonlinearity. In future work, we will pursue
this using stochastic averaging as in [25].

We now need an appropriate X and we note that

X(θ) = M(θ)C (34)

where C is an arbitrary invertible 6 × 6 matrix and M is
the principal solution matrix, i.e., M ′ = A(θ)M,M(0) = I.
Thus choosing X boils down to choosing a good C. As
is common for spin physics in electron storage rings we
emulate Chao’s approach [19, Section 2.1.4], [26,27] and use
the eigenvectors of M(2π). We assume that the unperturbed
orbital motion is stable. Thus M(2π) has a full set of linearly
independent eigenvectors and the eigenvalues are on the unit
circle in the complex plane [28]. We further assume a non-
resonant condition on the orbital frequencies. We construct
C as a real matrix using the real and imaginary parts of the
eigenvectors in its columns and using the fact that M(2π) is
symplectic (since A(θ) is a Hamiltonian matrix). It follows
that D̄ has block diagonal form and Ē has diagonal form.
Then the three degrees of freedom are uncoupled in the

operator LV in (30). Explicitly,

D̄ =
©­«
DI 02×2 02×2
02×2 DI I 02×2
02×2 02×2 DI I I

ª®¬ , (35)

Dα =

(
aα bα
−bα aα

)
, (α = I, I I, I I I) (36)

and Ē = diag(EI ,EI ,EI I ,EI I ,EI I I ,EI I I ) with aα ≤ 0 and
EI ,EI I ,EI I I ≥ 0. Thus the three degrees of freedom are
uncoupled in LV since, by (30),

LV = LV ,I + LV ,I I + LV ,I I I (37)

where each LV ,α is an operator in one degree of freedom
and is determined by Dα and Eα via (30) (α = I, I I, I I I).

We now have Y (θ) = X(θ)U(θ) ≈ Ya(θ) := X(θ)V(θ) and
it follows that ®ηY in (5) is given approximately by

®ηY (θ, y) ≈ ®ηY ,a(θ, y) = det(X−1(0))®ηV (θ,X−1(θ)y) (38)

Now (32) and the RBE for ®ηY ,a carry the same information.
However in general the RBE for ®ηY ,a does not have the nice
features of (32), e.g., (35), (36) and LV being θ-independent,
which make the latter useful for our numerical method (see
below). Hence we discretize (32) rather than the RBE for
®ηY ,a.

We finally mention a feature of ®ηV which is helpful for
finding an appropriate numerical phase space domain for ®ηV .
The orbital probability density PV corresponding to PVS is
defined by

PV (θ,v) =
∫

dsPVS(θ,v, ®s) (39)

whence by (31),

| ®ηV (θ,v)| = |
∫

ds®sPVS(θ,v, s)| ≤
∫

ds |®s |PVS(θ,v, s)

=

∫
dsPVS(θ,v, s) = PV (θ,v) (40)

so that the numerical phase space domain for ®ηV can be iden-
tified with the numerical phase space domain for PV . The
latter is easy to find since we generally use exact expressions
of PV , e.g., the one for orbital equilibrium.

TWO-DEGREE-OF-FREEDOM CASE
We now consider a case of two degrees of freedom in a

flat ring just with FODO cells and cavities. The case of two
degrees of freedom is a natural step towards three degrees
of freedom. Moreover the case of a flat ring allows us to use
a one-dimensional approach to spin, leading to a linear spin-
orbit system, a system to which we can apply our averaging
approach. The Gaussian nature of the associated process
allows us to analytically solve the average RBE.

In our flat ring model ΩY has the simple form

ΩY (θ,Y ) = −aY (θ)YJ , J =
©­«

0 1 0
−1 0 0
0 0 0

ª®¬
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where Y = (Y1,Y2,Y3,Y4)
T represents the horizontal and

longitudinal motions which are uncoupled from the ver-
tical motion in the flat ring model. It is convenient to
use spherical coordinates as spin variables, i.e., ®S =

(cos(Ψ) sin(Φ), sin(Ψ) sin(Φ),cos(Φ))T . The beam frame
system of Langevin equations are then

Y ′ = (A(θ) + εδA(θ))Y +
√
ε
√
ω(θ)(0,0,0,1)T ξ(θ) , (41)

Ψ
′ = aY (θ)Y , (42)
Φ
′ = 0 (43)

where the row vector aY (θ) is 2π-periodic in θ. To apply the
method of averaging to the system (41)-(43) we transform
the system to a standard form for averaging. We do this
by defining Ỹ := (Y1,Y2,Y3,Y4,Ψ,Φ)

T and by using a funda-
mental solution matrix Z of the unperturbed ε = 0 part of
(41)-(43), i.e.,

Z ′ = ©­«
A(θ) 04×2

aY (θ) 01×2
01×4 01×2

ª®¬ Z (44)

By transforming Ỹ into Q via

Ỹ = Z(θ)Q (45)

one gets the system of Langevin equations

Q′ = εD(θ)Q +
√
ε
√
ω(θ)Z−1(θ)e4ξ(θ) (46)

where e4 = (0,0,0,1,0,0)T and

D(θ) = Z−1(θ)

(
δA(θ) 04×2
02×4 02×2

)
Z(θ) , (47)

Thus the mean mQ and covariance matrix KQ of Q satisfy
the ODEs

m′Q = εD(θ)mQ , (48)

K ′Q = ε(D(θ)KQ + KQD
T (θ)) + εE(θ) (49)

where

E(θ) = ω(θ)Z−1(θ)e4eT4 Z−T (θ) (50)

By averaging (48) and (49) we get the ODEs

m′W = εD̄mW , (51)
K ′W = ε(D̄KW + KW D̄

T ) + ε Ē (52)

where the bar denotes θ-averaging. Since the ODE sys-
tem (51),(52) is autonomous it can be analytically solved.
For physically reasonable choices of the parameters in (41)-
(43) each fundamental matrix Z is a quasiperiodic function
whence D and E are quasiperiodic functions so that their
θ-averages D̄ and Ē exist. By averaging theory mQ(θ) =
mW (θ) +O(ε) and KQ(θ) = KW (θ) +O(ε) for 0 ≤ θ ≤ T/ε
where T is a constant (see also [21–24]). Every Gaussian

process W , whose mean mW and covariance matrix KW sat-
isfy the ODEs (51) and (52), satisfies the system of Langevin
equations

W ′ = εD̄W +
√
εB(ξ1, ..., ξk)

T (53)

Here ξ1, ..., ξk are statistically independent versions of the
white noise process and where B is a 6 × k matrix which
satisfies

BBT = Ē (54)

with k = rank(Ē). Since mQ(θ) = mW (θ) + O(ε) and
KQ(θ) = KW (θ) + O(ε) we get Q(θ) ≈ W(θ). In particular
Z−1(θ)W(θ) ≈ Ỹ (θ). Clearly the third component of the spin
does not evolve, the spins only evolve in the plane.

As in the case of three degrees of freedom we assume that
the unperturbed orbital motion is stable and nonresonant.
Thus, as in the case of three degrees of freedom, we can
construct a fundamental matrix Z such that the orbital part
of D̄ has block diagonal form and such that the orbital part
of Ē has diagonal form, i.e.,

D̄ =

©­­­«
DI 02×2 02×2
02×2 DI I 02×2
D̄51 D̄52 D̄53 D̄54 01×2

01×2 01×2 01×2

ª®®®¬ , (55)

Ē =

©­­­­­­­«

EI 0 0 0 Ē15 0
0 EI 0 0 Ē25 0
0 0 EI I 0 Ē35 0
0 0 0 EI I Ē45 0
Ē15 Ē25 Ē35 Ē45 Ē55 0
0 0 0 0 0 0

ª®®®®®®®¬
(56)

whereDI ,DI I are 2×2 matrices of the form (36) and EI ,EI I
are nonnegative. If PW = PW (θ,w) is a probability den-
sity of a Gaussian process associated with (53) then the
polarization density ®ηW corresponding to PW is defined by

®ηW (θ,w) =

∫
dw5dw6

©­«
cos(w5) sin(w6)
sin(w5) sin(w6)

cos(w6)

ª®¬PW (θ,w) (57)

and satisfies the RBE

∂θ ®ηW = −ε

2∑
j=1

∂wj

((
DI (w1,w2)

T

)
j

®ηW

−ε

4∑
j=3

∂wj

((
DI I (w3,w4)

T

)
j

®ηW

+
ε

2
EI

(
∂w1∂w1 + ∂w2∂w2

)
®ηW

+
ε

2
EI I

(
∂w3∂w3 + ∂w4∂w4

)
®ηW

−ε

4∑
j=1
D̄5jwjJ ®ηW −

ε

2
Ē55 ®ηW + ε

4∑
j=1
Ē j5J ®ηW (58)

Since the ODE system (51),(52) can be analytically solved,
PW can be computed analytically for every Gaussian process.
Then by (57), ®ηW can be computed analytically.
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ONE-DEGREE-OF-FREEDOM CASE
We now consider the case of one degree of freedom us-

ing the model studied in [29,30], which involves only syn-
chrotron motion. The case of one degree of freedom is the
first step towards two and three degrees of freedom. The
one-degree-of-freedom model here is obtained from the two-
degrees-of-freedom flat-ring model of the previous section
by setting, in (55) and (56),

0 = DI I = D̄52 = D̄53 = D̄54 = EI I = Ē25 = Ē35 = Ē45 ,

DI = −I2×2 , EI = 1 , Ē15 = −D̄51 , Ē55 = (Ē15)
2 (59)

One can justify the step from (55) and (56) to (59) as a
good approximation by applying the betatron-dispersion for-
malism to the flat ring model [31]. With (59) the variables
W3,W4,W6 are uncoupled so that we are left with the follow-
ing one-degree-of-freedom model resulting in the following
system of Langevin equations for the orbital variables W1,W2
and the spin variable W5:

©­«
W ′1
W ′2
W ′5

ª®¬ = ε ©­«
−1 0 0
0 −1 0
g 0 0

ª®¬ ©­«
W1
W2
W5

ª®¬
+

√
ε

2
©­«

1 0
0 1
−g 0

ª®¬
(
ξ1
ξ2

)
where g = D̄51 = −Ē15 and ξ1, ξ2 are statistically inde-
pendent versions of the white noise process. Denoting the
polarization density for our one-degree-of-freedom model
by ®η1D , one can show in analogy to the previous section that
it satisfies the RBE

∂θ ®η1D = ε

(
∂w1 (w1 ®η1D) + ∂w2 (w2 ®η1D)

)
+
ε

4
∂w1∂w1 ®η1D

+
ε

4
∂w2∂w2 ®η1D − εgw1J ®η1D −

ε

2
gJ∂w1 ®η1D −

ε

4
g2 ®η1D

(60)

Note that the analytic solutions of the RBE (60) give strong
evidence for the validity of the averaging method since the
analytic solutions of (60) can be compared with the solutions
of the analytic solutions of the exact RBE in [29, 30].

SKETCH OF THE NUMERICAL
APPROACH

We now briefly sketch our numerical approach to the
RBEs (32), (58) and (60). For simplicity we here fo-
cus on (32). The numerical computations are performed
by using 3 pairs (rα, ϕα) of polar coordinates, i.e., v1 =
rI cos ϕI , ...,v6 = rI I I sin ϕI I I . The angle variables are
Fourier transformed hence the Fourier coefficients are func-
tions of time and the radial variables. We discretize the radial
variables by using the pseudospectral method [32, 33] using
a Chebychev grid for each radial variable. This results for
each Fourier mode in a system of linear first-order ODEs in θ
which we discretize by using an implicit/explicit θ-stepping

scheme. Because of (30), (35) and (36) the Fourier modes
are uncoupled in LV ®ηV so that the only coupling of Fourier
modes in (32) comes via LV ,TBMT ®ηV = ΩY (θ,X(θ)v)®ηV
and this coupling is local since ΩY (θ,X(θ)v) is linear in v.
Thus the parabolic terms are separated from the mode cou-
pling terms, i.e., in the time stepping LV ®ηV is treated implic-
itly and LV ,TBMT ®ηV is treated explicitly. The implicit time
stepping involves a linear solver whose efficiency depends
on LV being θ-independent. Note that the pseudospectral
method is a minimial-residue method by which the residual
of a PDE is zero at the numerical grid points. Note also
that the numerical boundary conditions are periodic in the
angle variables and for each radial variable rα we impose
homogenous Dirichlet boundary conditions at rα = rmax.
The latter are justified by the inequality (40) and the fact
we impose these boundary conditions also on the orbital
probability density PV .
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