JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


https://doi.org/10.18429/JACoW-ICAP2018-WEPLG03
Title Theoretical and Computational Modeling of a Plasma Wakefield BBU Instability
Authors
  • S.D. Webb, D.L. Bruhwiler, N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.V. Burov, V.A. Lebedev, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
Abstract Plasma wakefield accelerators achieve accelerating gradients on the order of the wave-breaking limit, m c² k_{p}/e, so that higher accelerating gradients correspond to shorter plasma wavelengths. Small-scale accelerating structures, such as plasma and dielectric wakefields, are susceptible to the beam break-up instability (BBU), which can be understood from the Panofsky-Wenzel theorem: if the fundamental accelerating mode scales as b⁻¹ for a structure radius b, then the dipole mode must scale as b⁻³, meaning that high accelerating gradients necessarily come with strong dipole wake fields. Because of this relationship, any plasma-accelerator-based future collider will require detailed study of the trade-offs between extracting the maximum energy from the driver and mitigating the beam break-up instability. Recent theoretical work* predicts the tradeoff between the witness bunch stability and the amount of energy that can be extracted from the drive bunch, a so-called efficiency-instability relation . We will discuss the beam break-up instability and the efficiency-instability relation and the theoretical assumptions made in reaching this conclusion. We will also present preliminary particle-in-cell simulations of a beam-driven plasma wakefield accelerator used to test the domain of validity for the assumptions made in this model.
Footnotes & References * V. Lebedev, A. Burov, and S. Nagaitsev, "Efficiency versus
instability in plasma accelerators", Phys. Rev. Acc. Beams 20, 121301
(2017).
Funding This work was supported in part by the Department of Energy, Office of Science, Office of High Energy Physics, under contract number DE-SC0018718.
Paper download WEPLG03.PDF [0.451 MB / 4 pages]
Slides download WEPLG03_TALK.PDF [2.234 MB]
Export download ※ BibTeX LaTeXText/WordRISEndNote
Conference ICAP2018
Series International Computational Accelerator Physics Conference (13th)
Location Key West, FL, USA
Date 20-24 October 2018
Publisher JACoW Publishing, Geneva, Switzerland
Editorial Board Volker RW Schaa (GSI, Darmstadt, Germany); Kyoko Makino (MSU, East Lansing, MI, USA); Pavel Snopok (IIT, Chicago, IL, USA); Martin Berz (MSU, East Lansing, MI, USA)
Online ISBN 978-3-95450-200-4
Received 01 November 2018
Accepted 28 January 2019
Issue Date 04 May 2019
DOI doi:10.18429/JACoW-ICAP2018-WEPLG03
Copyright
Creative Commons CC logoPublished by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI.