Mathematical Methods

Rigorous Fixed Point Enclosures and an Application to Beam Transfer Maps

Alexander Wittig, Martin Berz

Department of Physics and Astronomy, Michigan State University East Lansing, MI, 48824

ICAP 2012, Warnemünde

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Transfer Maps

Typical workflow:

- O Computation of transfer map
 - Using differential algebra (DA) techniques, e.g. COSY INFINITY
 - High order computations
 - Yielding functional relationship between initial and final coordinates
- Particle tracking
 - Pick initial conditions
 - Apply transfer map, correct symplectic errors, repeat
- Analysis
 - Study tracking picture
 - Determine "dynamic aperture"

A D > A D > A D > A D >

Mathematical Methods

Invariant Manifolds

Conclusion

Dynamic Aperture

Not a (mathematically) well defined concept!

- Only finitely many initial conditions tracked
- Only a finite number of revolutions tracked Essentially educated guessing from pictures BUT: Pictures can be misleading!

Mathematical Methods

Invariant Manifolds

Conclusion

Dynamic Aperture

0.300

x-a tracking picture of real Tevatron map: nice interior with bad fringes?

・ロト ・四ト ・モト ・モト

Mathematical Methods

Invariant Manifolds

Conclusion

Dynamic Aperture

Mathematical Methods

Invariant Manifolds

Conclusion

Dynamic Aperture

Periodic Point Finder

Goal: Ensure we avoid such surprises!

- Need the "right" initial conditions for tracking
- Catch all possibly problematic points

Island structures form around elliptic periodic points (resonances) \Rightarrow Try to find periodic points!

Note: The following are equivalent problems

- fixed point: f(x) = x
- periodic point: $f^n(x) = x$
- root finding: f(x) = 0

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Mathematical Methods

Invariant Manifolds

Conclusion

Periodic Point Finder

Naive Newton's method fails, because origin is too "strong"

・ロト ・ 日 ト ・ モ ト ・ モ ト

Mathematical Methods

Invariant Manifolds

Conclusion

Attractive Fixed Point (Existence)

Theorem (Schauder's Theorem)

Let $K \subset \mathbb{R}^n$ be a non-empty, compact, and convex set. Then, any continuous map $f : K \to K$ has a fixed point in K.

A D > A D > A D > A D >

(Super-Brief) Intro to Taylor Model Methods

Taylor Model Methods (Makino, Berz) for verified numerics:

- Extension of differential algebra (DA) techniques
- Automatic rigorous calculation of truncation errors DA:

$$f(x_0 + \delta x) \approx f(x_0) + f'(x_0) \cdot \delta x + \dots + \frac{1}{n!} f^{(n)}(x_0) \cdot \delta x^n$$

TM:

 $f(x_0 + \delta x) \in f(x_0) + f'(x_0) \cdot \delta x + \cdots + \frac{1}{n!} f^{(n)}(x_0) \cdot \delta x^n + [-\varepsilon, \varepsilon]$

• Polynomial bounders (e.g. LDB) provide highly accurate bounds for images of sets under *f*

Mathematical Methods

Invariant Manifolds

Conclusion

Attractive Fixed Point (Uniqueness)

Theorem (Banach's Theorem)

Let K be a non-empty, complete metric space. Then, any contraction $f : K \to K$ has a unique fixed point in K.

Reminder: A map f is a contraction if $\exists 0 \leq K < 1$ such that

$$|f(x) - f(y)| < K |x - y|$$

 $\forall x, y \in K$

A D > A D > A D > A D >

Combining both theorems:

Corollary

Let $K \subset \mathbb{R}^n$ be a convex, compact set, and $f : K \mapsto K$ be continuously differentiable with $|Df(x)| < 1 \ \forall x \in K$. Then f has a unique fixed point in K.

Verification procedure:

- Find small box B around assumed fixed point and show it is mapped into itself (⇒existence)
- **2** Bound |Df| over B and show it is less than 1 (\Rightarrow uniqueness)

Global fixed point finder

- works for all types of fixed points (repelling, hyperbolic, elliptic, attracting)
- Ind verified fixed point enclosures automatically
- If ind all fixed points in given area

Invariant Manifolds

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Conclusion

Preconditioning

For any regular matrix A:

$$f(x) = x \iff A \cdot f(x) = A \cdot x$$

As fixed point problem:

$$f(x) = x \iff A \cdot (f(x) - x) + x = x$$

Idea

Choose A so $A \cdot (f(x) - x) + x$ has a strongly contracting fixed point x_0 .

 $\begin{array}{c} \text{Mathematical Methods} \\ \circ \bullet \circ \circ \circ \end{array}$

Invariant Manifolds

Conclusion

Preconditioning

Idea

Choose A so $A \cdot (f(x) - x) + x$ has a strongly contracting fixed point x_0 .

$$A = -(Df(x_0) - I)^{-1}$$

Derivative of

$$A \cdot (f(x) - x) + x$$

at fixed point x_0 :

 $A \cdot (Df(x_0) - I) + I = -(Df(x_0) - I)^{-1} \cdot (Df(x_0) - I) + I = -I + I = 0$

Mathematical Methods

Invariant Manifolds

Conclusion

Preconditioning

Idea

Choose A so $A \cdot (f(x) - x) + x$ has a strongly contracting fixed point x_0 .

- Similar to Newton method applied to f(x) x,
- A does not have to be rigorous, any regular A will do,
- A above is best choice yielding superlinear contraction.

Mathematical Methods

Invariant Manifolds

Conclusion

Effect of Preconditioning

without preconditioning

・ロト ・ 日 ト ・ モ ト ・ モ ト

Mathematical Methods

Invariant Manifolds

Conclusion

Effect of Preconditioning

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

with preconditioning

Rigorous Root & Fixed Point Finder

Basic algorithm for Global Fixed Point Finder:

- Start with region of interest on stack
- Itest top box on stack for fixed point
 - No FP: discard
 - FP found: keep box as result (or split if enclosure too big)
 - Unknown: split box
- S While stack not empty: continue with 2.

Yields verified enclosures of all fixed points in area of interest.

A D > A D > A D > A D >

Invariant Manifolds

Theorem (Invariant Manifold Theorem)

Hyperbolic fixed points of diffeomorphisms have invariant manifolds.

Stable manifold of fixed point p:

$$W_p^s = \left\{ x \in \mathbb{R}^n | \lim_{n \to \infty} f^n(x) = p \right\}$$

Unstable manifold of fixed point p:

$$W_p^u = \left\{ x \in \mathbb{R}^n | \lim_{n \to \infty} f^{-n}(x) = p \right\}$$

Hyperbolic fixed points in transfer maps have invariant manifolds!

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Transfer Maps

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Transfer Maps

stable and unstable manifolds of all periodic points $\langle \Box \rangle \land d P \rangle \land \exists \rangle \land \exists \rangle$

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Transfer Maps

stable (blue) and unstable (magenta) manifolds $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle$

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Transfer Maps

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Transfer Maps

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds and Chaos Invariant Manifolds can prove chaotic behavior

Theorem (Poincaré-Birkhoff-Smale)

If the stable and unstable manifold of a hyperbolic fixed point intersect transversely, the map exhibits chaos (has positive topological entropy).

Chaos is induced by the construction of a Smale horseshoe from higher iterates of the manifolds:

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Lorenz

Mathematical Methods

Invariant Manifolds

Conclusion

Invariant Manifolds in Lorenz

Conclusion

- A rigorous fixed point finder
 - can automatically identify fixed points in area of interest
 - utilizes functional dependence in transfer maps
 - is guaranteed to find all periodic points
 - is mathematically fully rigorous

Invariant Manifolds

- can mathematically rigorously prove existence of chaos
- can provide bounds on the island region of the transfer map

Mathematical Methods

Invariant Manifolds

Conclusion

Thank You

Thank you for your attention.

Questions?

