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Abstract

The matrix formalism as a numerical approach for solv-

ing of ODE equations is considered. It is a map method and

has several advantages over classical step-by-step integra-

tion methods. This approach allows to present the solution

as set of numerical matrices. A complete derivation of the

equations this method is based on will be shown. Problems

of symplectification and computing performance are dis-

cussed. We have developed an application that provides a

tool for differential equations solving. The developed pro-

gram allows to generate the final programming codes on

C++, Fortran, MATLAB, C#, Java languages. The given

approach is applied to long-term evolution of charged par-

ticle and spin dynamics in electrostatic fields.

MATRIX FORM OF ODE

Let’s introduce a nonlinear system of ordinary differen-

tial equations

d

dt
X = F (t,X). (1)

Under the assumptions of F (0, X0) = 0 the system (1) can

be presented in the following form

d

dt
X =

∞
∑

k=0

P 1k(t)X [k], (2)

where X [k] is kronecker power of vector X , matrices P 1k

can be calculate as

P 1k(t) =
1

(k)!

∂kF (t,X0)

∂(X [k])T
, k = 1, 2, . . .

Note that vector X is equal to (xk1

1 , . . . , xkn

n ), where xi

means ith component of state, (k)! = k1! . . . kn!

NUMERICAL IMPLEMENTATION

Solution of system (2) can be written in form

X =
∞
∑

k=0

R1k(t)X
[k]
0 . (3)

Elements of matrices R1k are depended on t and can be

calculated in symbolic mode [1]. But such algorithms are

quite complex. In this paper we propose a numerical im-

plementaton of it. In this case matrices R1k are evaluate in

the specific time.

∗05x.andrey@gmail.com

After differentiating the equation (3) and taking into ac-

count (2) we get

dX

dt
=

∞
∑

k=0

dR1k(t)

dt
X

[k]
0 ,

∞
∑

k=1

dR1k(t)

dt
X

[k]
0 =

∞
∑

k=1

P 1k(t)X [k].

The partial derivatives of this equations with respect to X
[j]
0

are equal to

dR10(t)

dt
=

∞
∑

k=1

P 1k(t)(R1k)[k],

dR1j(t)

dt
=

∞
∑

k=1

P 1k(t)
∂X [k]

∂(X
[j]
0 )T

, k = 1, 2, . . .

(4)

and define the system of ordinary differential equations.

Solution of this system is deterined matrices R1k.

For integration of equations (4) numerical approach can

be used. Note that step-by-step integration use only for

map building. After that the solution that corresponds to

the initil point X0 can be calculate with the same map

(3). In the research we use symplectic 2 stage Runge-Kutta

scheme of 4 order (see [2]).

SYMPLECTICATION

The relation (3) can be presented as map transformation

X = R ◦X0. (5)

This map R is symplectic if

M∗JM = J, ∀X0, (6)

where M = ∂X/∂X0 and M∗ is the transponse of M , E
is identity matrix,

J =

(

0 E
−E 0

)

. (7)

Relation (6) in case of numerical matrices R1k leads to

a system of equations

a0 +A1X0

[1] + ·+AkX0

[k] = 0,

where Ai is a numerical vector. Note that this equation

must be satisfied for any X0. It means that the coefficients

of each polynom are equal to zero and in this way appro-

priate corrections of the elements of the matrices R1k can

be found.
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Figure 1: Command window for Taylor series expansion.

ODE SOLVING

For solving an ordinary differential eqation it is necces-

sary to implement following steps (see Fig. 2):

• to expanse function F in (1) in a Taylor series up to

the order k;

• to build matrices P 1i, i = 1 . . . k;

• to solve the ordinary differential equations (4) with

respect to the elements of matrices R1i, i = 1 . . . k;

• calculate solution (3).

Taylor Series Expansion

We have implement libraries for automatically ex-

pansion of a nonlinear function to corresponded Tay-

lor series up to the any order. The function may

be a composition of such elementary functions as

sinx, cosx, tanx, ex,
√
x, lnx, and operators +,−, ∗, /.

Figure 2: Map building of ODE.

In Fig. 1 developed command window is shown. For

Taylor series representation symbolic polinoms are used.

SIMULATION OF ELECTROSTATIC

STORAGE RING

Electrostatic storage ring consist of elements with differ-

ent electric field distribution. In this research quadrupole

lenses, cylindrical deflectors and drifts are used. The or-

bital motion and spin dynamics of the particle are described

in [2]. Using such equations and library for Taylor series

expansion that described above it is possible to build matrix

form for each lattice element (see Fig. 3).

This software allows to build computational model and

consist of pre build components. Each of this components

can be added to the design area by drag and drop events.

Building of the R sulting MM p

After maps are built for each elements of lattice it is pos-

sible to evaluate map for one tune of whole lattice. Such

map is constructed using serial concatenation procedure.

Imaging we have two numerical serial maps

X1 =

k1
∑

k=0

R1k
1 (t)X

[k]
0 ,

X2 =

k2
∑

k=0

R1k
2 (t)X

[k]
1 .

Substituting X1 to the equation for X2 we obtain

X2 =

k1·k2
∑

k=0

R̃1k
2 (t)X

[k]
0 .

As you can see the resulting map has order k1 · k2. But

we can use terms of order not higher than max(k1, k2),
because other members are errors in the form of our initial

in Taylor series expansions.

MaRe
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Figure 3: GUI environment for map building and code generation.

Evaluation of the eference

Reference orbit of the map can be found from the equa-

tion (3). It is a nonlinear equation that can be solved by a

numerical method. But in linear case we have:

Xref = (E −R11)−1R10. (8)

Symplectification Sample

Figure 4: Map without symplectification.

Using a symplectic integration algorithm to build a map

does not guarantee the symplectic map at all. For exam-

ple, after 100000 turns becomes significant violation of the

symplectic condition (see Fig. 4). To solve this problem

we can increase the accuracy of step-by-step integration.

But more accurate and efficient solution is map symplecti-

cation that described in this paper. In Fig. 5 a phase plane

after additional symplectification is shown.

CONCLUSION

Matrix formalism is a high performance approach for or-

dinary differential equations solving. It allows present a

solution as numerical matrix multiplication. This implies

the possibility of implementation of the method in paral-

lel codes [3, 4]. The result of the research is software for

Figure 5: Map symplectification.

solving ODE in matrix form up to the neccessary order of

nonlinearity. Direction of further development is the real-

ization of matrix formalism in a symbolic form.
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