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Abstract
A new approach for the computation of short range 

wake fields for ultra-relativistic bunches in linear 

accelerators is presented. The method is based on the time 

domain solution of Maxwell equations for arbitrary 3D-

geometry using a purely explicit, split-operator scheme. 

This approach guarantees the dispersion free propagation 

of the numerical solution in the longitudinal direction. In 

addition, it enables wake field simulations on moving 

computational windows. These ideas have been realized 

in the development of PBCI; a parallelized, fully 3D-

wake field code. Detailed simulation results for several 

accelerator components, including the TESLA 9-cell 

structure and a rectangular collimator used in the ILC-

ESA test beam experiments are presented. 

INTRODUCTION

The X-FEL and the ILC projects require high quality 

beams with ultra-short electron bunches. In order to 

predict the energy spread and emittance growth of such 

bunches, an accurate knowledge of the short range wake 

fields induced in the different accelerator components is 

necessary. Due to the geometrical complexity involved, 

however, the computation of wake fields and potentials 

for long accelerator structures is generally accessible only 

to numerical simulations. 

In the course of the past 20 years, several wake field 

simulation codes for rotationally symmetric structures 

have been developed and used with considerable success 

in the design of linear accelerators [1, 2]. The use of a 

“moving window” in the simulation of ultra-relativistic 

bunches (Bane, Weiland [3]) and the indirect path wake 

potential integration (Napoly et al [4]) represent, thereby 

two important milestones in this development. It is, 

however, surprising to note that only very recently, the 

issue of generalizing these two approaches for simulations 

in 3D-geometry was addressed. In a pioneering work of 

Zagorodnov et al [5], a semi-implicit 3D-discretization 

technique for Maxwell equations with no dispersion in the 

longitudinal direction was introduced. This is prerequisite 

for a moving window implementation since in this case, 

the numerical phase velocity of longitudinal waves must 

exactly match the speed of light in vacuum. In [6], the 

generalization of the indirect path wake potential 

integration for 3D-structures was established. In [7], an 

eigenmode expansion approach for the computation of 

transition wake potentials in outgoing pipes of infinite 

length is proposed. Despite few differences in the 

implementation, the wake potential integration method 

used in this paper is basically the same as in [7]. The pure 

frequency domain description used here, however, allows 

for more general computations. Such a computation is, for 

example, the frequency domain reconstruction of the 

wake field solution in a beam pipe of finite length 

separating two inhomogeneous accelerator sections. This 

procedure avoids completely the time domain simulation 

within the separating pipe, thus, saving a considerable 

computation time. 

In this paper, we present wake field simulations with 

the newly developed code Parallel Beam Cavity 

Interaction (PBCI) which is designed for massively 

parallel wake field simulations in arbitrary 3D-geometry. 

The algorithms used include a purely explicit and 

dispersion free split-operator scheme as well as a domain 

decomposition approach for highly balanced parallel 

computations. A description of these algorithms is given 

in first two sections. In the third section, the beam pipe 

termination approach based on the modal analysis of 

outgoing fields is presented. This approach is used, 

instead of the indirect path wake potential integration, for 

the computation of transition wake potentials in outgoing 

pipes of arbitrary cross section. The rest of the paper is 

dedicated to the numerical results obtained for a number 

of relevant accelerator components in the context of the 

X-FEL and ILC projects. 

NUMERICAL METHOD 

Finite Integration Technique 

The general framework used in PBCI for the spatial 

discretization of bunch induced electromagnetic fields is 

the Finite Integration Technique (FIT) [8, 9]. The 

semidiscrete equations of FIT can be written as 

1 1

1

T
d

dt

e e0 M C M j

M C 0h h 0

,        (1) 

where the discrete fields e  and h  are interpreted as 

electric and magnetic voltages along the edges of a 

staggered discretization grid and j  is the excitation 

current. The operator C  denotes the topological curl;

M  and M  are positive definite, diagonal material 

operators allowing for the constitutive closure of the 

above Maxwell-Grid-Equations (MGE). 
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The integration of Eq. 1 in time is typically performed 

by applying an explicit time-marching scheme of the form  

1
1

nn n

t
t

e e M j
G

h h 0

,             (2) 

where tG  represents the specific time evolution 

operator of the integration scheme, and 1n nt t t  is 

the integration time step. This operator, e.g., for the 

commonly used leapfrog integrator is given by 
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The leapfrog scheme has been thoroughly investigated 

in terms of stability and dispersion properties. In 

particular, for Cartesian grids it can be shown that the 

dispersion error is largest for waves propagating in the 

direction of coordinate axes (see Fig. 1a). This property of 

the scheme is responsible for the large dispersion error 

(numerical noise) which is often observed in particle 

beam simulations, since for these applications the 

longitudinal waves associated with the bunch motion 

dominate the electromagnetic field spectrum. 

An additional drawback of the scheme is that, no 

moving computational window can be used in the 

simulation of ultra-relativistic electron bunches. Since the 

longitudinal phase velocity of the numerical field solution 

does not match the bunch velocity (moving at the speed 

of light in vacuum), unphysical reflections are produced 

at the boundaries of the computational window. These 

errors increase systematically with simulation time, thus 

deteriorating numerical accuracy, in particular, for long 

accelerator structures. 

 Split-Operator Scheme 

The idea of split-operator methods is to modify the time 

update in Eqs. 2 and 3, such that certain, preferred spatial 

directions are handled separately. The split-operator 

scheme used in PBCI was originally developed for the 

purpose of suppressing numerical noise in self-consistent 

Particle-In-Cell (PIC) simulations [10]. It is obtained by 

decomposing the time evolution operator in Eq. 2 into 

longitudinal and transversal parts using the second order 

accurate, Strang splitting procedure [11]. The resulting 

Longitudinal-Transversal (LT) splitting scheme reads 

1
1
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 (4) 

The longitudinal and transversal propagators, 
l tG

and
t tG , contain only derivatives in the longitudinal 

and transversal directions, respectively. Note that, the two 

transversal updates in Eq. 4 will not affect plane wave 

solutions propagating in the longitudinal direction, 

whereas 
l tG  represents the time evolution of a purely 

one dimensional system. Thus, for an appropriate choice 

of the time step (see below), exact numerical integration 

in the longitudinal direction can be arranged. 

The LT scheme is completed by replacing each of the 

time evolution operators in Eq. 4 with second order 

accurate Verlet leapfrog propagators. In matrix operator 

form they can be written as 
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where 1 1

; ;

T

l t l tC M C , 2 1

; ;l t l tC M C , and 
lC ,

tC  denote 

the reduced curl operators containing only longitudinal 

and transversal derivatives, respectively. The overall 

accuracy of the above method is of second order in space 

and time. In addition, for a homogeneous discretization in 

the longitudinal direction, the scheme is stable at the 

“magic time step” for the one dimensional Maxwell 

equations, /t z c , where z is the grid spacing in the 

longitudinal direction.  
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Figure 1: Normalized numerical phase velocities for the 

(a) leapfrog and (b) LT schemes. The deviation of the 

curves from the unit circle represents the dispersion error 

for a given propagation direction. The solid and dashed 

lines show the phase velocities for a grid resolution of 5 

and 10 grid points per wave length, respectively. For the 

LT scheme /t z c  is chosen. 

Exact numerical dispersion relations for the LT scheme 

using von Neumann analysis have been derived in [10]. 

Here, we only show the behaviour of the numerical phase 

velocity as compared to the standard leapfrog scheme. 

Figure 1 shows normalized numerical phase velocities, 

which are computed from the dispersion relations as, 

/v ck , where  and k  are the numerical 

frequency and wave number, respectively, and c  is the 

speed of light in vacuum. In each of the two graphs, two 

different grid resolutions for waves propagating in the xz-

plane have been used. The dispersion error of the leapfrog 

scheme becomes largest in the directions of coordinate 

axes. Contrary, the LT-scheme (Fig. 1b) minimizes the 

dispersion error in the longitudinal, z-direction. Thus, the 
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effect of the above operator splitting consists in rotating 

the optimum dispersion direction in the longitudinal 

direction, corresponding to the bunch motion. 

At the “magic time step”, /t z c , the LT scheme 

has no numerical dispersion along the z-direction (see Fig. 

1b). The exact propagation of longitudinal waves allows 

for a moving window implementation. Additionally, Eq. 4 

is purely explicit in time which makes the time stepping 

algorithm highly parallelizable. 

PARALLELIZATION PROCEDURE 

In fully 3D simulations involving short bunches (e.g., 

300 m for the ILC-ESA experiments) and structures of 

several meters length, huge computational resources in 

terms of memory and CPU time are needed. Such 

simulations can only be handled in a parallel computing 

environment. The parallelization model used in PBCI is 

based on the distribution of computational tasks among a 

number of memory independent processing nodes. For 

simulation efficiency, however, well balanced workloads 

should be assigned to each process in order to ensure 

coherency in parallel program execution. Additionally, 

the necessary interprocess communication must be kept at 

the lowest level possible. 

PBCI uses a geometrical decomposition of the 

computational domain (partitioning) between the single 

processes. Each processing node is responsible for 

performing computational tasks on the field data 

contained within the respective subdomain. The 

partitioning approach is shown schematically in Fig. 2 for 

a three-node cluster. Starting with the global 

computational domain, an orthogonal bisection of the 

domain bounds is recursively applied. The procedure 

results in a binary tree, whose internal nodes are 

intermediate subdomains whereas the tree leaf nodes 

correspond to the active (computational) subdomains. 

Because of the local nature of the FIT discrete operators, 

only field values residing at active subdomain boundaries 

need to be exchanged during the computation. The 

orthogonal bisection approach minimizes the number of 

such boundary values and, thus, the communication 

overhead in the field update equations. 

Figure 2: Example decomposition of the computational 

domain on a three-node cluster.  

In order to determine the optimum partitioning which 

results in equally balanced workloads among the 

processing nodes, PBCI implements the load balancing 

scheme proposed in [12] for PIC simulations. The 

recursive bisection procedure is performed on the basis of 

computational weights 
iW   which are assigned to each 

grid point. The total computational load associated with 

an intermediate subdomain is, 
iW W , where the 

summation includes only grid points within the 

subdomain. If the subdomain has to be partitioned 

between N  processes, the bisection bounds are chosen 

such that  

left left

right right

W N

W N
  with

left
2

N
N  , 

right
2

N
N      (6) 

where 
leftW ,

rightW  and 
leftN ,

rightN  are the computational 

weights and the number of processes, respectively, 

assigned to the two subdomains created by subdivision. 

This algorithm allows for an almost ideally balanced 

distribution of computational workloads. In addition, it 

can be applied to simulations involving an arbitrary 

number of processors on heterogeneous clusters. 
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Figure 3: Parallel speedup of the algorithm for different 

sizes of the computational grid. 

The performance of the above algorithm in terms of 

parallel speedup for different grid sizes is demonstrated in 

Fig. 3. The speedup curves show perfect behaviour, lying 

almost on the theoretical limit. Exceptions make the 

“tiny” discrete models of 1E6 and 1E7 grid cells, 

respectively. As expected, for these models, interprocess 

communication and memory cache effects dominate the 

computational costs. The performance tests in Fig. 3 were 

performed on a cluster of 3.4GHz Intel processors 

connected by a conventional 1Gbit/s Ethernet network. 

MODAL ANALYSIS IN BEAM PIPES 

For ultra-relativistic electron bunches the wake fields 

generated by a geometrical discontinuity of the 

accelerator walls will catch-up the bunch at a very large 

Global computational 

domain

Intermediate subdomain 

Active subdomain Active subdomain 

Domain bisection 
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distance (time) behind the discontinuity. The integral 

quantity of interest is the longitudinal wake potential, 

1 '
( , ) ' , , ',

z

z z

z s
W s z dz E x y z t

Q c
,       (7) 

where zE  is the longitudinal electric field component, s

is the distance from the bunch head and z  denotes the 

travelling distance of the bunch within the structure. The 

overall wake field force on the electron bunch is, then, 

given by ( , )zW s . The direct integration of Eq. 7 in the 

time domain, however, is often impossible, because of the 

large catch-up distance behind the discontinuity. 

The simple approach used in PBCI for overcoming this 

difficulty is schematically shown in Fig. 4. The total wake 

potential is separated into a “direct part”, ( ,0)zW s ,

containing the incoming beam pipe and the discontinuity, 

and a “transient part”, accounting for the wake field force 

in the outgoing beam pipe. The direct wake potential is 

integrated according to Eq. 7 using the time domain 

simulation data. For the computation of the transient wake 

potential a modal expansion of the electromagnetic field 

solution in a transversal plane within the outgoing pipe is 

performed. Denoting by 0z  the position of the plane 

the general form of such an expansion is 

( , ,0, ) ( ) ( , ) expn

z n z

n

E x y t d c e x y i t ,   (8) 

where ( , )n

ze x y , is the n-th (TM) eigenmode solution in 

the pipe and ( )nc  is the frequency domain spectral 

coefficient of the mode extracted by Fourier analysis. 

Using Eq. 8 the integration of the wake potential 

contribution of a single mode within the pipe, 

0

'
( ) ' ( )exp ( ) 'n n n

z s
W s dz d c ik z i

c
, (9) 

is readily found to 

( )
( ) exp

/ ( )

n
n

n

c s
W s d i

i c k c
,     (10) 

where ( )nk  is the wave number of the mode. The total 

longitudinal wake potential is, then, computed as  

1
( , ) ( ,0) ( , ) ( )n

z z z n

n

W s W s e x y W s
Q

.        (11) 

Note that, in Eq. (10) the vanishing of the wake fields at 

infinity is explicitly used. 

From the point of view of numerical implementation, 

the above procedure includes the one-time solution of a 

2D eigenmode problem in the outgoing pipe, the Fourier 

analysis of the time dependent modal coefficients and the 

inverse Fourier transform for computing the wake 

potential contributions of Eq. 10. Hereby, the number of 

eigenmodes used in the simulation may be critical for the 

validity of the results. However, since only a 2D 

eigenmode problem has to be solved, the calculation of a 

large number (several hundred) eigenmodes is always 

possible with a minor computational effort, in particular, 

in the parallel implementation of PBCI. 

Figure 4: Separation of the wake potential computation 

into the direct and outgoing pipe, transition parts. 

Apart from the frequency domain representation used 

in Eq. 10, the above procedure is equivalent to the 

approach proposed in [7]. The computation of the inverse 

Fourier transform is there avoided by introducing centred 

differences in time and space for the time dependent 

modal coefficients. Maintaining an explicit frequency 

domain representation of the modal coefficients, however, 

is of advantage for purposes other than the calculation of 

wake potentials. Such a situation is illustrated in Fig. 5. 

Shown is the PITZ diagnostics double cross [13] (see 

below). About one third of the structure consists of a 

cylindrical pipe separating a small step at the entrance 

from the rest of the structure. The eigenmode expansion is 

performed shortly behind the step. Then, using the 

frequency domain analysis of the modal coefficients, the 

full electromagnetic field solution is reconstructed within 

the moving window at the end of the pipe. There, the time 

domain simulation for the rest of the structure is resumed. 

This procedure results in considerable saving in the total 

computational time. 

Figure 5: Time domain simulation (top) vs. frequency 

domain reconstruction within the moving window 

(bottom) in the separating pipe of PITZ. For illustration, 

only 15 modes were used in the reconstruction. 
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SIMULATION EXAMPLES 

TESLA 9-Cell Structure 

As a first example, the wake fields induced by a 1nC 

bunch of 5mm length in the TESLA 9-cell structure are 

presented. The simulation was performed on a moving 

window over a distance of 1.5m. About 80 million grid 

points were needed for accurately resolving geometry and 

bunch extension. The total simulation time for this 

problem size on a 24-node cluster of conventional PCs 

was slightly higher than 3hrs. 
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Figure 6: Geometrical view of a small section of the 

TESLA 9-cell structure and wake fields induced at two 

different bunch positions. 

Figure 6 shows a 4-cell section of the structure and the 

wake fields within the moving window at two different 

bunch positions.  In Fig. 7 the build-up of the longitudinal 

wake potential within the structure (and in part of the 

outgoing beam pipe) is shown. Note that, here the wake 

potential transition to infinity is not considered. Instead, 

the wake potential contributions up to different, but fixed 

positions within the structure are computed. 
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Figure 7: Build-up of the longitudinal wake potential at 

different positions z within the TESLA 9-cell structure. 

Since the geometry of the TESLA 9-cell structure is 

(assumed) rotationally symmetric, a 2.5D simulation 

could have been performed. The results presented here, 

however, provide a good test for the performance of a 

fully 3D code when massive parallelization is used, even 

when compared to traditional 2.5D codes.  

PITZ Diagnostics Double Cross Section 

In this application, the wake field contributions within 

the diagnostics double cross of the PITZ injector [13] are 

computed. This section is the first part in the beam line 

which breaks the axis symmetry. Thus, a 3D simulation of 

the structure is necessary. The geometrical layout of the 

ten-port vacuum device is shown in Fig. 8. 

The investigation includes three separate simulations 

for comparing the influence of the wake fields induced by 

the different geometrical obstacles within the device. In 

the first simulation, the geometry was simplified to the 

beam tube including only the small step at the entrance of 

the section. The second simulation included the vacuum 

vessel without the shielding tube. The third simulation 

considered the full geometry as shown in Fig. 8.  

Figure 8: Geometrical view of the diagnostics double 

cross of the PITZ injector. 

The simulation results for an electron bunch of charge 

1nC and rms length 2.5mm are shown in Fig. 9. For 

resolving the small details of the geometry, a total of 250 

million grid points were used in the discretization. It was 

found that the small step of 1mm height is responsible for 

10-15% of the induced wake fields. The effect of the 

vacuum vessel inside the cross is about six times higher. 

The wake field effects are reduced, as expected, when the 

tube shielding is included. 
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Figure 9: Longitudinal wake potentials induced by the 

different obstacles within the diagnostics double cross. 
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ILC-ESA Rectangular Collimator 

The collimator considered is part of the ILC-ESA test 

beam program [14]. A schematic view and the dimensions 

of the structure are show in Fig. 10. 
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Figure 10: Beam and side views of the collimator #8 for 

the ILC-ESA test beam experiments. 

Due to the extremely short bunch length (300 m) and 

the smooth tapering of the collimator slow numerical 

convergence is expected. Therefore, a fine discretization 

with a mesh resolution of up to 20 m in all three 

directions was used. This resulted in a computational 

model with more than 450 million grid points. Figure 11 

shows the convergence of the longitudinal wake potential 

with grid resolution. Figure 12 shows the directly 

computed wake potential vs. the wake potential transition 

in the outgoing pipe. The transition potential clearly 

dominates the solution because of the large catch-up

distance of the high frequency fields. 
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Figure 11: Convergence of the longitudinal wake potential 

vs. grid resolution for the ILC-ESA collimator. 
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Figure 12: Direct vs. transition wake potential. 150 modes 

were used in the computation of the transition potential. 

CONCLUSIONS 

In this paper wake field simulations with the PBCI code 

for several X-FEL and ILC components are presented. 

The simulations demonstrate that the wake fields of ultra- 

short bunches in 3D geometry can be efficiently 

computed when specialized numerical algorithms 

combined with massive parallelization are employed. 
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