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Abstract

We set up a consistent framework for the Lagrangian
view of (3+1)-dimensional electro-dynamics using the lan-
guage of differential forms with no need for coordinate sys-
tems or reference frames. A natural decomposition mecha-
nism admits the construction of this framework with a min-
imum of overhead. Employing two observers, one holo-
nomic and the other one locally inertial, opens the possibil-
ity to use the simple form of both the Maxwell equations
and the constitutive relations simultaneously. Connections
to standard results are provided, and the feasibility is fur-
ther demonstrated by means of a classical application.

INTRODUCTION

In many engineering applications the interaction be-
tween the electromagnetic field and moving bodies is of
great interest. It is natural to use a Lagrangian description,
where the unknowns are defined on a mesh which moves
and deforms together with the considered objects. What is
the correct form of Maxwell’s equations and the constitu-
tive laws under such circumstances? The aim of the present
paper is to tackle this question by using the language of dif-
ferential forms.

We start from Maxwell’s equations and constitutive re-
lations in four-dimensional flat Minkowskian space-time.
While this essentially constitutes an Eulerian point of view,
we proceed to a four-dimensional Lagrangian description
by transformation to the canonical reference space. The
next step is to introduce a (3+1)-decomposition mechanism
which is based exclusively on the pair of a vector field and
a 1-form, describing an observer in space-time, [5, 7]. With
the help of this mechanism, all fundamental operators like
exterior derivative, Hodge, and contraction can be easily
decomposed. An application to four-dimensional electro-
dynamics yields the common notions of three-velocity and
contraction factor, defines the three-dimensional field com-
ponents, and provides general (3+1)-Maxwell and constitu-
tive equations. It becomes obvious that if the observer re-
sponsible for the decomposition is holonomic or locally in-
ertial, then Maxwell’s equations or constitutive laws adopt
their simple form, respectively. This observation becomes
utilized by introducing two observers to the Lagrangian set-
ting, one holonomic and the other locally inertial. In order
to profit from their individual advantages, a transformation
law connecting the two observers is established, again sim-
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ply by plugging in the decomposition mechanism. This
concludes a convenient description of (3+1)-dimensional
electro-dynamics. As an application of our approach, we
consider the classical paradoxon by Schiff, [8].

Due to space limitations, most of our results are stated
without proof. Detailed derivations are given in the ex-
tended version [4]. There, we also provide connections of
our approach to standard results.

SPACE-TIME ELECTRO-DYNAMICS

Our model for physical spacetime is that of a four-
dimensional affine space M4 equipped with a metric g of
signature (+ - - -), referred to as Minkowski space. The
metric is represented by the mapping g : ΛX 1(M4) →
ΛF1(M4) from the space of smooth (multi-)vector fields
to the space of smooth differential forms, defining the ex-

tent of a p-form ω as ‖ω‖ =
√
|(ω

∣∣g−1(ω))|, where ·
∣∣·

is the usual duality product. In M4, electro-dynamic phe-
noma are described by Maxwell’s equations, namely,

dF = 0, and dG = J , (1)

where d stands for the exterior differential operator, F , G ∈
F2(M4) are the electromagnetic field and excitation, re-
spectively, and J ∈ F3(M4) the four-current density. The
field F and the excitation G are linked by the constitutive
laws, [2],

iu

(
∗ G + c0εF

)
= 0, (2a)

iu

(
∗ F − c0µG

)
= 0, (2b)

where iu denotes the contraction by the four-velocity u, c0

the vacuum velocity of light, ε and µ the electric and mag-
netic permeabilities, and ∗ is the Hodge operator associated
with the metric g. The four-velocity vector field u is time-
like and of unit length with respect to g, iug(u) = 1. It is
tangent to the world-lines of the volume elements in M4.
Maxwell’s equations (1) and the constitutive laws (2) con-
stitute a complete four-dimensional Eulerian description of
electro-dynamics in M4.

LAGRANGIAN PERSPECTIVE

The Lagrangian observer describes the events from
a reference space M 0

4 , which is the product of a
one-dimensional oriented affine space M 0

1 and a three-
dimensional oriented affine space M 0

3 , the configuration
space, as illustrated in Figure 1. The reference space
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Figure 1: Reference space M 0

4 , placement mapping Φ.

M 0

4 and the physical space M4 are linked by a placement
mapping in form of a diffeomorphism Φ : M 0

4 → M4. The
physical interpretation of Φ is deduced from the observa-
tion of a point Q ∈ M 0

3 , which defines a curve

c0

Q = M 0

1 × Q (3)

in M 0

4 . Then the mapped curve cQ = Φ(c0

Q) in M4 is ex-
actly the world-line of the volume element labelled by Q.
The Lagrangian description of electro-dynamics is noth-
ing more than the reformulation of Maxwell’s equations
(1) and the constitutive laws (2) within the reference space
M 0

4 . This is accomplished by pull-back of the involved
field quantities and operators via the placement mapping
Φ. After setting

F 0 = Φ∗F , G0 = Φ∗G, J 0 = Φ∗J ,

the transformed equations are of the same kind as the orig-
inal ones, namely,

d 0F 0 = 0, and d 0G0 = J 0, (4a)

i
u

0

(
∗0 G0 + c0εF

0
)

= 0, (4b)

i
u

0

(
∗0 F 0 − c0µG0

)
= 0, (4c)

where ∗0 indicates the Hodge operator of the pulled-back
metric g0. With (4), a complete four-dimensional La-
grangian description has been derived, whose properties
will be elaborated in the sequel.

(3+1) DECOMPOSITION MECHANISM

Definition In order to keep as much flexibility as pos-
sible, we employ the techniques presented in [5, p. 117].
The setting is illustrated in Figure 2. For a general space-

n

σ = const

Figure 2: Foliation and fibration of M described by n and
σ = const.

time manifold M , let a fibration of M be described by a
three-parameter vector field n, introducing the notion of
relative space. Furthermore, let a foliation of M be de-
scribed by a one-parameter family of hypersurfaces σ =

const., introducing the notion of relative time. Setting
σ = dσ, it is possible to scale n and σ such that

inσ = 1. (5)

The pair (n, σ) constructed in this manner constitutes an
observer in space-time. In the special case of an inertial
observer, the fibration consists of parallel time-like lines
with the leafs of the foliation being orthogonal, and we
have σ = g(n). Without the parallelism of the fibres, a lo-
cally inertial observer is obtained provided that σ = g(n)
in every point. If a frame of reference was attached to an
observer (n, σ) satisfying (5), n and σ would describe the
temporal basis elements of this frame. However, the fol-
lowing (3+1) decomposition mechanism does not rely on
the existence of a reference frame. In particular, we con-
struct a projection operator P = Pn,σ depending only on
the two constitutive parameters n and σ.

We first consider the space X p = X p(M) of smooth
p-vector fields on M . Setting

X p
ω

=
{
w ∈ X p : ω

∣∣w = 0
}

,

the projection of a (1-)vector field is defined by

P : X 1 → X 1
σ
×X 0

σ
, w �→ (a, b),

b = σ
∣∣w, a = w − bn.

We proceed analogously for decomposing forms. Let
Fp = Fp(M) denote the space of smooth p-forms on M ,
and define

Fp
w

= {ω ∈ Fp : iwω = 0} .

Then, the projection of a 1-form is given by

P : F1 → F1
n
×F0

n
, ω �→ (α, β),

β = ω
∣∣n, α = ω − βσ.

In Figure 3, the action of P on a covector ω is sketched in
2D. The domain of P can be extended to Fp by setting

n

ω = α + βσ

σ

α

1/β

Figure 3: Projection of a covector ω.

P : Fp → Fp
n
× Fp−1

n
, ω �→ (α, β),

β = inω, α = ω − σ ∧ β = in(σ ∧ ω).
(6)

From the definition above, it is obvious that the projection
P has the inverse

P−1 : Fp
n
×Fp−1

n
→ Fp, (α, β) �→ ω = α + σ ∧ β.
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Decomposition of the exterior derivative We indi-
cate the Lie derivative along the vector field n as “tem-
poral” derivative

•

= Ln = in◦ d + d◦ in.

For the exterior differentiation of a projected pair (α, β) ∈
Fp

n
×Fp−1

n
, it is natural to use the composition P ◦d◦P−1.

We obtain

P ◦ d◦P−1 =

(
d3 η∧
•

− d3+δ∧

)
, (7)

where δ =
•

σ is the acceleration 1-form and η = d3σ

the vorticity 2-form, [3]. In other words, we have that
dσ = η + σ ∧ δ with (η, δ) = P (dσ). In the case that
(n, σ) is seen as the temporal basis vector and covector of
a reference frame, one obtains a geodesic frame for δ = 0,
and an irrotational frame for η = 0. Whenever δ �= 0 or
η �= 0, one speaks of an anholonomic frame. We remark
that the composition d3◦ d3 = −η∧

•. This does not contra-
dict Stoke’s theorem, since η �= 0 yields σ∧dσ �= 0 which
violates the Frobenius integrability condition. In this case,
a three-dimensional integral submanifold does not exist.

Of special interest will be the case dσ = 0 yielding δ =
η = 0. Then, the decomposition of the exterior derivative
is given by the simple form

P ◦ d◦P−1 =

(
d3 0
• − d3

)
.

A direct consequence of these considerations is that the
canonical form of the (3+1)D Maxwell equations is only
guaranteed for δ = η = 0, as will become obvious in Sec-
tion “Decomposition of Maxwell’s equations”.

Decomposition of the Hodge operator Let

s : Λ(F) → Λ(F), ω �→ (−1)deg ωω.

The metric isomorphism g−1 : Fp → X p can be decom-
posed into

Pg−1 = (g−1
3 s, . ), g−1

3 : Fp
n
→ X p

σ
, (8)

with a positive definite metric g3. In particular, we have

g−1(ω) = g−1
3 (sω) + n ∧ χ(sω), (9)

for a mapping χ : Fp
n
→ X p−1

σ
. A justification for (9) is

given in [4]. It is possible to express the induced Hodge
∗3 for the 3-metric g3 in terms of the 4D Hodge ∗ and the
vector field n, namely

∗3 = ‖n‖−1
in∗ .

Now, everything is available to decompose the Hodge ∗
with respect to the projection P . To this end, define λ ∈ R

and w ∈ X 1
σ

by (w, λ) = Pg−1(σ). Considering(
α′

β′

)
= P ∗ P−1

(
α

β

)
= P ∗ (α + σ ∧ β),

gives

β′ = ‖n‖ ∗3 α − ‖n‖iw ∗3 sβ,

α′ = −‖n‖ ∗3 iwsα + ‖n‖λ ∗3 sβ − ‖n‖iw ∗3 iwβ.

Thus, the Hodge ∗ decomposes to

P ∗ P−1 = ‖n‖

(
− ∗3 iws λ ∗3 s − iw ∗3 iw

∗3 −iw ∗3 s

)
. (10)

Of special interest is the case w = 0. If (n, σ) is ex-
tended to a reference frame, this frame is said to be time-
orthogonal. Then, the decomposition simplifies to

P ∗ P−1 = ‖n‖

(
0 λ ∗3 s
∗3 0

)
.

Moreover, it follows for w = 0 that g−1(σ) = λn, thus,

λ = σ
∣∣g−1(σ) = λg(n)

∣∣λn = λ2‖n‖2,

yielding λ = ‖n‖−2. Therefore, the decomposition of the
Hodge operator in time-orthogonal frames is given by

P ∗ P−1 =

(
0 ‖n‖−1 ∗3 s

‖n‖∗3 0

)
. (11)

The consequence of these observations is that simple
(3+1)D constitutive laws only occur for w = 0, as will
be shown in the next section.

Decomposition of the contraction The projection P
also enables us to decompose the contraction of a p-form
ω = α + σ ∧ β by a vector field u ∈ X . We can write u

as

u = a + bn, a ∈ X 1
σ
, b ∈ X 0.

Then, the contraction iu decomposes to

P iuP−1 =

(
ia b
0 −ia

)
. (12)

(3+1) DECOMPOSITION OF
ELECTRO-DYNAMICS

Decomposition of the four-velocity Projecting the
four-velocity u defines the three-velocity v measuring the
velocity in three-space X 1

σ
of the observer given by (u, µ)

relative to (n, σ). Additionally, one obtains the contraction
factors γ1, γ2, and the 1-form ν by setting

γ1

(
v/c0

1

)
= Pu, γ2

(
ν/c0

1

)
= Pµ. (13)

Setting −β2 = c−2
0

ν
∣∣v, we obtain

−γ1γ2β
2 = 1 − γ1γ2.

For the contraction factor γ defined by γ2 = γ1γ2, we ob-
serve that

γ =
(
1 − β2

)−1/2
. (14)
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In our setting, we will consider the special case of locally
inertial observers,

n = g−1(σ), u = g−1(µ). (15)

Then we have

γ1 = σ
∣∣u = σ

∣∣g−1(µ) = σ·µ = µ
∣∣g−1(σ) = µ

∣∣n = γ2,

thus, γ = γ1 = γ2. From (13), we conclude

u = γ(n + v/c0). (16)

Decomposition of Maxwell’s equations With the pro-
jection operator P , it is possible to decompose the four-
dimensional electro-dynamic quantities into their three-
dimensional components. The four-potential Φ, the exci-
tation G, the electromagnetic field F , and the four-current
density J decompose to(

A
−ϕ/c0

)
= PΦ,

(
D
H/c0

)
= PG, (17a)(

B
−E/c0

)
= PF ,

(
ρ

−J/c0

)
= PJ . (17b)

These projections define the conventional three-
dimensional electromagnetic field quantities, [5, p. 118ff.].
Projecting the four-dimensional Maxwell equations (1)
and substituting P−1P for the identity yields

P dP−1PF = 0, and P dP−1PG = PJ .

Using the decompositions (7) and (17) of the four-
differential and of the field quantities, respectively, we ob-
tain the (3+1)-Maxwell equations

d3H = J + Ḋ +δ ∧ H, d3 B = 0 +η ∧ E,

d3 E = −Ḃ +δ ∧ E, d3 D= ρ −η ∧ H,

the continuity equation dJ = 0 yields

d3 J + ρ̇ = δ ∧ J,

and the definition of the four-potential dΦ = F gives the
potential equations

E = − d3 ϕ − Ȧ +ϕ ∧ δ, B= d3A −ϕ ∧ η.

It becomes obvious that it will not be convenient to operate
in anholonomic settings, i.e. whenever δ or η are different
from zero.

Decomposition of the constitutive laws We proceed
in the same manner to derive (3+1)-dimensional constitu-
tive laws. The projection of (2) gives

P iuP−1
(
P ∗ P−1PG + c0εPF

)
= 0, (18a)

P iuP−1
(
P ∗ P−1PF − c0µPG

)
= 0. (18b)

Using the decompositions (12), (10), and (17) of the con-
traction, the Hodge star, and the field quantities, respec-
tively, yields (3+1)-dimensional constitutive laws. A par-
ticularly easy situation is obtained by introducing a locally
inertial observer, in which the considered material element
is instantaneously at rest. Then, the three-velocity v is zero,
hence, u = n by (16) and n = g−1(σ). As a conse-
quence, we have a = 0, b = 1 in (12) and, due to the
time-orthogonality, the Hodge star decomposes to the sim-
ple form (11), with ‖n‖ = 1. Therefore, indicating the
such projected field components with a prime, relations
(18) imply that

∗3D
′ = εE ′, ∗3B

′ = µH ′. (19)

In the more general setting of (15) and (16), we obtain

D = ∗3ε
(
E − (1 − c2/c2

0
)ivB

)
+ O(β2),

B = ∗3µ
(
H + (1 − c2/c2

0
)ivD

)
+ O(β2),

which are the well-known relations confirmed by Wilson
and Röntgen/Eichwald, respectively. If the decomposition
was not time-orthogonal, we would have to deal with the
more involved expression (10) for the decomposed Hodge
operator, which would lead to a quite complicated form of
the constitutive laws. The advantage of our approach is that
we will not have to consider this situation.

APPLICATION TO THE LAGRANGIAN
PERSPECTIVE

In the following, we establish two (3+1)-decompositions
of the reference space M 0

4 . To this end, we parametrize the
curves c0

Q defined in (3) by arc-length with respect to the
pulled-back metric g0. This admits the introduction of a
coordinate t0

Q on c0

Q and, proceeding like this for all Q in
M 0

3 , of a coordinate t0 in M 0

4 . The set described by t0

Q = 0,
Q ∈ M 0

3 , constitutes a leaf of the foliation of M 0

4 . The pair
(n0, σ0) given by

n
0 = ∂c0t0 , σ0 = d(c0t

0),

represents the natural foliation of M 0

4 . By construction,
we have σ0

∣∣n0 = 1, thus, it is possible to apply the pro-
jection formalism. We remark that the choice of (n0, σ0)
is unique. Although for any non-zero α ∈ F 0(M 0

4 ), the
pair (αn

0, α−1σ0) describes the same foliation, the choice
α = 1 is fixed by the fact that the arc-length parametriza-
tion requires |α| = 1, while the orientation of M 0

1 sets the
sign.

By construction, we have that DΦ(n0) = u, i.e., n
0 =

u
0 resulting in v

0 = 0, as it is suggested by a Lagrangian
description. Moreover, we have dσ0 = 0 by construction,
thus, the projected Maxwell equations are of their simple
form. We remark that the condition g(n0)

∣∣n0 > 0 reduces
the possibilities for admissible placement mappings Φ, re-
quiring that the curves c0

Q and cQ have to be inside the light
cone defined by the metric g 0 and g, respectively.
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The metric admits the definition of a second, metric-
compatible observer, by setting

n
′ = n

0, σ′ = g0(n′).

We immediately observe

σ′
∣∣n′ = g(n′)

∣∣n′ = g(n0)
∣∣n0 = ‖n0‖2 = 1,

thus, the projection mechanism may be applied again.
Moreover, since v

0 = 0, ‖n′‖ = 1, and due to the time-
orthogonality, the projected constitutive laws are of their
simple form (19). The push-forward DΦ(n′, σ′) defines
a locally inertial observer in M4. As a consequence, if
ω′ ∈ Fp

n
′(M 0

4 ) is a field quantity with respect to the pro-
jection defined by (n′, σ′), then ΛDΦ(ω′) ∈ Fp

u
(M4) is

the corresponding measurable physical quantity, according
to the hypothesis of locality, [6].

In order to suitably relate the two foliations, one has to
formulate a transformation law which establishes a one-to-
one correspondence between the spaces Fp

n
0 × Fp−1

n
0 and

Fp
n

′ × Fp−1
n

′ . We remark that both spaces are identical,
since n

0 = n
′. The correspondence is simply given by the

mapping P 0 ◦ (P ′)−1. One obtains(
α0

β0

)
=

(
1 (σ′ − σ0)∧
0 1

)(
α′

β′

)
. (20)

As pointed out before, the advantage of employing both
decompositions is that we can employ simple (3 + 1)-
Maxwell equations with respect to (n0, σ0) and simple
constitutive laws with respect to (n′, σ′). The transforma-
tion law (20) completes a convenient description of (3+1)-
dimensional electro-dynamics.

EXAMPLE

We present an application of the above formalism to the
classical paradoxon by Schiff [8]. Originally, the setting is
given in terms of two conducting spheres. For the sake of
simplicity and in order to illustrate the idea, we investigate
an analogue in terms of an infinitely long cylinder, see [1, p.
320]. The following field quantities are chosen with respect

a

observer
Ω

ω

Figure 4: Paradoxon by Schiff (simplified): homoge-
neously charged cylinder, two different situations.

to an inertial observer attached to the axis of the cylinder.
The cylinder of radius a is homogeneously charged with a

surface charge distribution σ = q/(2πa). It may rotate at
an angular speed ω, causing an azimuthal convection cur-
rent jϕ = −ωqδ(r − a)/(2π), where δ denotes the delta
distribution. We install an observer which may rotate at an
angular speed Ω. We consider two different situations in
which the observer measures the field inside the cylinder.
In the first one, only the cylinder moves, whereas in the
second one, only the observer moves:

• Ω = 0, ω = ω0: As a result of the convection current,
the interior of the cylinder is filled by an electromag-
netic field with radial displacement Dr = 0 and axial
magnetic field Hz = −ωq/(2π).

• Ω = ω0, ω = 0: The interior is free of an electromag-
netic field, which has to hold for arbitrary observers.
Therefore, the observer should find D ′

r = H ′

z = 0.
However, should not this case be identical to the first
one from the observer’s point of view? He always ex-
periences the same kinematics: a cylinder moving at
the same angular speed.

The resolution of this apparent paradox results from
considering the correct measurable fields for the sec-
ond case. One of the benefits of our approach is now
that we consider Maxwell’s equations with respect to
the observer (n0, σ0) where they basically keep their
usual form. Nevertheless, they have to be transformed
into rotating cylinder coordinates, as found for exam-
ple in [1, p. 268]. In M4, we choose coordinates
(c0t, r, ϕ, z) yielding the natural bases (c−1

0
∂t, ∂r, ∂ϕ, ∂z)

and (c0 dt, dr, dϕ, dz) of the tangent and cotangent
spaces, respectively. The metric g in matrix notation
is given by diag (1,−1,−r2,−1). For the reference
space M 0

4 , the coordinates and bases are completely anal-
ogous, namely (c0t

0, r0, ϕ0, z0), (c−1
0

∂t0 , ∂r0 , ∂ϕ0 , ∂z0),
and (c0 dt0, dr0, dϕ0, dz0).

The placement mapping Φ : M 0

4 → M4 is given by

c0t = γc0t
0, r = r0, z = z 0

ϕ = ϕ0 +
Ω

c0

γc0t
0 = ϕ0 + Ωt,

with γ = (1 − (Ωr0/c0)
2)−1/2. The foliation-induced

observer is simply given by (n0, σ0) = (c−1
0

∂t0 , c0 dt0).
For the local inertial observer, we have n

′ = n
0 = c−1

0
∂t0

and

σ′ − σ0 = g0(n ′) − σ0 = −γr2Ω/c0 dϕ0.

We now turn to the source data of the given problem. In
M4, we have

ρ =
q

2π
δ(r−a) dr ∧ dϕ ∧ dz, J = 0,

with respect to the projection P = Pc−1

0
∂t, c0 dt. By pull-

back to M 0

4 and decomposition with respect to P 0, we ob-
tain(

ρ0

−J0/c0

)
= P 0J 0 =

q

2π
δ(r0−a)

(
dr0

∧ dϕ0
∧ dz0

γΩc−1

0
dz0

∧ dr0

)
.

(21)
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We remark that due to the axial symmetry of the domain
and the data, all involved quantities depend only on r0, not
on ϕ0 or z 0. Therefore, the three-derivative is given by
d3 = dr0 ∧ ∂r0 . Maxwell’s equations reduce to

−∂r0H 0

z = j 0

ϕ, (22a)

∂r0D0

r = ρ0. (22b)

From (21), we deduce for the solutions of (22)

H 0

z =
q

2π

{
c2 r0 < a,

c2 + γΩ r0 > a,
(23)

D0

r =
q

2π

{
c1 r0 < a,

c1 + 1 r0 > a.
(24)

In order to derive physically observable pulled-back quan-
tities, we employ the transformation (20). This results in

D ′ = (D0

r +
γr2Ω

c2
0

H 0

z ) dϕ0 ∧ dz0,

H ′ = H 0 = H 0

z dz0.

If D ′ and H ′ are written in coordinates with respect to the
coordinate basis (c0 dt0, dr0, dϕ0, dz0), we have

D ′

r = D0

r +
γr2Ω

c2
0

H 0

z , H ′

z = H 0

z .

From (23) and (24), we obtain

D ′

r =
q

2π

⎧⎨
⎩c1 + c2

γ(r0)2Ω
c2

0

r0 < a,

c1 + c2
γ(r0)2Ω

c2

0

+ γ2 r0 > a.
(25)

Using the constitutive laws (19) requires the calculation
of the three-dimensional Hodge ∗0

3 . It turns out that
the coefficients of the induced metric (g 0

3 ) are given by
diag (1, (γr)2, 1). This motivates the explicit construction
of the Hodge ∗0

3 by replacing r by γr0 in the expression for
the three-Hodge in cylindrical coordinates. From (19), we
observe

D ′

r = εγr0E ′

r .

Now, we can deduce the integration constants c1 and c2

in (23) and (25), respectively. Since D ′

r has to remain
bounded for r0 → ∞, we have c2 = 0. Since E ′

r =
D ′

r/(εγr0) also has to remain bounded for r0 → 0, we
have c1 = 0. This finally gives the solution

H ′

z =
γq

2π

{
0 r0 < a,

Ω r0 > a,
(26)

and for the solution of (22b)

D ′

r =
γ2q

2π

{
0 r0 < a,

1 r0 > a.
(27)

Thus, the interior is free of an electromagnetic field.

In order to validate our result, we push-forward our solu-
tion from M 0

4 to M4, and decompose the result with respect
to the inertial observer (c−1

0
∂ dt, c0 dt). As result, we ex-

pect the electro-static field of a line charge on the cylinder
axis for r > a. In M 0

4 , the excitation G0 is given by

G0 =
γq

2π

(
γ−1 dϕ0 ∧ dz0 + Ω dt0 ∧ dz0

)
,

for r0 > a. The pushed-forward excitation G in M4

amounts to

G = DΦG0 =
q

2π
dϕ ∧ dz.

Applying the projection P with respect to (c−1
0

∂ dt, c0 dt)
yields(

D
H/c0

)
= PG ⇒ D =

q

2π
dϕ ∧ dz, H = 0,

as has been expected.

CONCLUSION

Summing up, our approach sets up a consistent frame-
work for the Lagrangian view of (3+1)-dimensional
electro-dynamics using the language of differential forms
with no need for coordinate systems or reference frames.
The decomposition mechanism, [5], admits the construc-
tion of this framework with a minimum of overhead, only
relying on the notion of an observer. Employing two
observers, one holonomic and the other locally inertial,
opens the possibility to use the simple form of both the
Maxwell equations and the constitutive relations simulta-
neously. The feasibility and usefulness of the approach is
demonstrated by means of a classical example, [8].

REFERENCES

[1] J. V. Bladel, Relativity and Engineering, ser. Springer Series
in Electrophysics. Berlin: Springer, 1984.

[2] W. Burke, Applied differential geometry. Cambridge, UK:
Cambridge University Press, 1985.

[3] M. Fecko, “On 3+1 decompositions with respect to an ob-
server fi eld via differential forms,” J. Math. Phys., vol. 38,
no. 9, pp. 4542–4560, 1997.

[4] B. Flemisch, S. Kurz, and B. Wohlmuth “A Framework
for Maxwell’s Equations in Non-Inertial Frames Based
on Differential Forms,” IANS Preprint 2006/011, Univer-
sität Stuttgart, http://preprints.ians.uni-stuttgart
.de/, 2006.

[5] F. Hehl and Y. Obukhov, Foundations of Classical Electrody-
namics. Boston: Birkhäuser, 2003.
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