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Overview

* The Los Alamos Neutron Science Center
(LANSCE) accelerator facility provides
many opportunities for U.S. science and
technology programs

* Delivers multiple beams to six facilities

* Three major Department of Energy
(DOE) Stakeholders:
* Defense Programs (DP)
* DOE Office of Science

* Office of Nuclear Energy, Science and
Technology (NE)

» Studies at LANSCE include:
* Nuclear weapons program
* National security research
* Radioisotope production

* Basic science- (neutrino & dark matter
searches)
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LANSCE Facilities

* The LANSCE accelerator complex
supports a large set of experiments

* |sotope Production Facility (IPF)

* Production of medical isotopes

* Development of short-lived isotopes for
defense programs

* Proton Radiography (pRad)

* Dynamic radiography for defense programs

e Ultra-Cold Neutron (UCN)

* Nuclear physics and NSF studies

* Lujan Neutron Scattering Center

* Neutron scattering and imaging for defense o« W
programs and nuclear energy

- k8

eapons Neutron Researh (WNR)

— Nuclear physics for defense programs and criticality safety
- Electronics testing for industrial and global security

* Nuclear physics for defense programs
e Coherent neutrino and dark matter searches

* Material and electronics testing for industry . EXperimental Area A

— Originally the primary facility for muon production and study
— The LSND experiment was the key to the discovery of sterile neutrinos

_ — Several concepts are under review for new high-profile experiments
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Tuning

Tuning Methods

6 500-MeV Beam to WNR * There are two primary categories for beam tuning
 Model Driven Tuning

TGT4

* Model driven

Width (cm)

* Model independent

uuuuuuuu [m]

-« o |Model driven methods are used for the initial
tune of an accelerator, such as;

* Initial optical transport tune of the low-energy beam transports

500-MeV Beam to WNR e

TGT4

Width (em)

(LEBT)
Model Independent Tuning * Beam capture and acceleration of the radio-frequency modules
pE——— p— — m— e Energy matching and bunching within the
roo-oo 11 accumulation/acceleration rings
s - e Lecenelin oo Ll * Model independent methods dominate the

optimization of an accelerator tune, like;

e Optical element corrections to reduce beam loss in the
accelerator

i Tl * The steering of beam in the transport lines to reduce beam loss

RO->1LIRs
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B R o * Optimization of all component parameters to improve average
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[ * Both categories of tuning could be automated
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Tuning Strategies

* There are two primary strategies for both model
driven and independent methods:
* Beam Acceptance Tuning
e Adaptive Tuning for desired performance

* Most of LANSCE’s recent automation efforts are centered
around the automation of the model independent methods
* Adaptive tuning for reduction of loss and increased current
* Machine Learning for system responses

* Accelerator alarm system based on analysis with neural
network applications

* Preliminary results have already shown promising
results

* We are now building new models and applications for
assisted and/or automation of model centric tuning

A. Scheinker, EC Huang, and C. Taylor. "Extremum Seeking-Based Control System for Particle Accelerator Beam
Loss Minimization." IEEE Transactions on Control Systems Technology 30.5 (2021): 2261-2268.
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Tuning Metho

Tuning of the Transport Lines: Acceptance Tuning

LDQTO7 1Daso1
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LDQTO06 =

— Ny RIQF02
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LDBMOS LDBM10 am
LDQTO3 LDBMO7 mes—E-Ha ¥—m 1

LDQT02 LDBMO6 RIBMO3 rismos 1BV’ RIBMOS

LDQTO1 RIBMO4 RIBMO8
LDBMO5 RIBMOS
/BMM
LDBMO3
LDQMO4 & . . \

Loamos oy e Think of the HEBT as a roller

LDBMO2

Shortened length
Shortened length

LDBMO1 coaster with people, T
Loomor o designed for individuals greater than 180 Ibs o2
100 lbs, but less than 250 Ibs L, 7Y

XDBMO04 L

XDKI02 o People at 180 Ibs are ideally accepted

XDBMO3

xoKio1 * Any other weight and the people
XDQMO02
PR w0z will fly off the rollercoaster

XDBMO1 .

* An adjustable system would be

LABMO1

HAGhet . needed to allow for lighter and

Module 48- End of LINAC heaVier people
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Tuning of the Transport Lines: Adaptive Tuning

If we instead regulate the transport system instead
of the input source, we can perform adaptive
tuning to reduce beam loss

e Now imagine the transport as a laser transport
through a pinball machine
o Angle varies mirrors are tilted (top)

o Wavelengths shift, refactors are shifted (bottom)

e The rollercoster-like acceptance tuning methods
are ideal during reproducible run cycles

e However, with low-energy runs, adaptive tuning is
essential to improve beam quality achieved with
scaled acceptance tuning

e During our studies, we applied both methods
together and successfully transported the beam

—
@ Los Alamos



Accelerato

H+ Source

H- and H* Beam Injection

Walton/
I

Column
Region

* The LANSCE front-end section includes two
independent injectors for H* and H beams

Quadrupoles

 The low-energy transport (LEBT) for each beam
species include a pre-buncher for modulation of the
DC beam

H+ Pre-Buncher

Bender Deflector

Main Buncher
Bender

 There are 10 emittance stations, 7 harps, 11 current
monitors, and 6 beam apertures with readouts

Deflector \ /

Emittance
Stations

Bender
Quadrupoles

H- Pre-Buncher

* The H beam includes a low-frequency buncher for
compression of multiple pulses into the RF structure
of the accelerator

H- Chopper

Cockcroft—
Walton/
Column
Region

e Currently only the H beamline has a chopper for
multiple user facilities, a key beam control component

* The lines are merged just before entrance to the
205.25 MHz drift tube linac (DTL) where they are first Solencid 2
conditioned by the main buncher

Solenoid 1
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Accelerato

Tunin

reproducibility

expanded to the HEBT

Cl111lV1ll T XEC

A T I

The use of adaptive tuning is necessary

g Methods for the Low-Ener

gy Beam Transport

The LEBT tuning depends on a source with limited

The model driven software we developed here could be
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Accelerator

Drift-Tube Linac (DTL)

Module 2
CST model

Image from Sergey Kurennoy
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Beam Direction

L

e The H and H* beams are matched from
the LEBT into the DTL accelerator

e The DTL accelerates the 750 keV beams
up to 100 MeV

* There are 4 DTL modules with differing
lengths and cell dimension

T o | ks | ok

Energy gain 4.64 MeV 35.9 MeV 31.4 MeV 27.7 MeV
Energy out 5.39 MeV 41.3 MeV 72.3 MeV 100 MeV
Tank Length 326 cm 1969 cm 1875 cm 1792 cm
Power 0.305 MW 2.697 MW 2.74 MW 2.67 MW
# of cells 31 66 38 30
Bore Radius 0.75cm 1-1.5cm 1.5cm 1.5cm



Module 1 Phase Scan

_ HPSim model for the 100 MeV H+ for IPFN .

&3
A model driven system is being developed for H+ beamline in L/u\ N
LEBT and IPF Nl
* Phase scan data for H+/H- were taken in 2022 run cycle "o w0 0 s 1w
* Fitted with HPSim for 6 RF cavities (pre buncher, main buncher, Module 1- . Beam Energy Distribution
4 in the DTL) - 2022/09/29 17:06
e Simulated with HPSim for 23 days with 1-min interval prior to 9/29
the phase scan 0~
* Mean energy drifting consistent with observed beam phase changes :ZZZ e
* Online model was created and communicated with operation 10/7
team to allow real-time prediction or with archive data, 0
waiting for H+ beam for 2023 B
* The HPSim tool has also been developed, but not fully tested 10/14
for the side-coupled cavity linac ’ |
* Development of the high-energy beam transport is currently 10/22
being coded into the HPSim applications
QLOS Alamos 0 0850 9875 9900 9925 9950 9975 100,00 10025 100.50
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Side Coupled-Cavity Linac (CCL)

e After the Drift Tube Linac (DTL) accelerates proton
beam to 100 MeV it is transported to the 805-MHz CCL

e Beam Position & Phase Monitors (BPPM) are used to
measure the beams acceleration for each module

e The BPPM also are the primary method used for
steering

Wire scanners are used to document the beam profile

26PM002%{flv('LBEG',"\t\t(+0000:+2000)em')}" Beam Position and Phase

Side-Coupled Cavity

Chopped Mode Threshold BRI 7] 200

reeze

Beam Position Bar BPPM Program
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Side Coupled-Cavity Linac (CCL)

. . Mod 12: Sys1 (Min at 83.98) Mod 12: Sys2 (Min at 83.98)
A model driven phase shape method is | 35,80 100 35.9]
used for the AT of the CCL of .
live PSP = 35.95
« . -200
* Digital RF system upgrades from old 100 . 300 ——
| t 100 0 100 100 0 100
dna Ogue Sys ems (-0.3MeV, 77.0deq, -1.8%/-4.2%/-5.0%) Fwd/Rfl Pwr = 478/4 MW, ASP=58.2%
0.4} 1.7 . 14)
* More accurate beam energy /4 L
3 / / 0.4
measurements 02 Y/
o So !{ 0.2
* Modernized method for tuning the 7 N .
= 0 = 1) SEEEEEEERERRE R s R
CCL modules : AT~ 3
o S5 lS 0.2
* Working on refinements of the data = /0
o« e, -0.3 .-'- ! 1
acquisition system : S o ;
-0.4 L. s I L L I L i L |
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Accelerator

HEBT Simulation: Acceptance Tuning

LANSCE Phase I Upgrade Technical Dsign Repm'l Chapter I - Draft of 7/26/96
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Figure 8. Horizontal and vertical beam envelopes for 6.6 times the rms size of the beam with RMS emittance of 0.08
n-cm-mrad and the size due to a momentum spnad of +0.5% added Ime:rly Also sbown are the locations of the magnetic
«elements and the horizontal and vertical inside di ions of the pipes throug jection line. In the skew bend, the beam
envelopes and apertures are those in the skew plane. In the last bend, the envelopes have added 0 them the beam-centroid shifts

for horizontal on-axis injection and vertical steering to the injection point.

Original Design RI Line model
WqLosAlamos
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* We start with scaled
Acceptance tuning

* The beam acceptance
can be calculated by
finding the point at
which the emittance
increase causes the
beam to touch the side
of the beam line

* In 2021 (right), the

beam RMS does a much
better job of staying
within the confines of
the beam pipe
dimensions when
compared with the
initial design
parameters (left)

Width [cm)

2021 Horizontal and vertical beam envelopes for 6.6 times the

RMS size, from the end of the LINAC to the point of ring
injection.

X and Y of 805 to Rl Line
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HEBT Simulation: Adaptive tuning and Optimization Visualization

e RMatrix has been developed to use

e o the TRANSPORT optics code to
ﬂ s - . v transform our HEBT tuning into a
. ]};L 0o oume  cuen o model driven process
.. o ' - e This mode includes two modes of
L — i ‘ - operation:
o Tuning match for beam parameters

o Optimization Visualization

® The visualization reads the magnets
real-time and allow the operator see
the changes in the beam envelope

® The Rmatrix is ready to be used for the
LEBT startup this year

® The HEBT method will need more time
in testing to validate results
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Accelerat

Summary

* The LANSCE accelerator is tuned by both model driven and independent methods

* The front-end of the accelerator is tuned with adaptive tuning and the rest is
predominately optimized through beam acceptance tuning

* Over the past several years we have been developing automation routines for model
independent tuning

* In the last two years, have introduced new automated model driven methods
* Initial results have shown good prediction of beam behavior

AAAAAAAAAAAAAAAAAA



Questions?
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