i~ UNIVERSITY OF

g

i CAMBRIDGE 3,

o)

Using BDD testing in SKAO:
Challenges and Opportunities

Presenter: Verity Allan,

University of Cambridge
Co-authors: Giorgio Brajnik, Ray Brederode

email: vla22@cam.ac.uk



Telescope Design

Component & Connector
View of the Observatory

software.

TMC = Telescope
Monitoring & Control

SDP = Science Data
Processor

CSP = Central Signal
Processor

SRC = SKA Regional
Centre
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SAFe®

e Planning Intervals (Pls) lasting 1 quarter
O  containing a Planning week
® Agile teams
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Goals

test often & quickly _w_m

® b
e help devs find bugs
e stakeholders can validate spec
e |t's economic
—— ‘__’;




Challenges

Many domains

Diverse skill levels

High autonomy

needs multiple teams

specialist hardware, requiring complex integration environments.

under resourcing of integration
W /?\ . 'nz

highly distributed teams
g &
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Why BDD?

® specification by example
O you know what the system should do
® test steps specified in a simple format
e development of Domain specific language (DSL)
® results in living documation
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SDP scenario

Given I connect to an SDP subarray
And obsState is READY

When I call Scan

Then obsState is SCANNING

And scanID has the expected value

75

ttttttttt

{9 CAMBRIDGE




TMC BDD scenario with examples

Given I connect to an SDP subarray

And obsState is <obs_state>
When I call <command> with an invalid JSON configuration
Then the device raises an API_CommandFailed exception

Examples:
obs_state command
EMPTY AssignResources
IDLE Configure
READY Scan
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SKAOQO Test Environments

e Cloud ¢ >

e PSls (Prototype System Integration environments):
O Canada, Netherlands, Australia

e |TFs (Integrated Test Facilities):
O  South Africa & Australia
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What can we test where?

Environment  unit tests signal chain @ software basic large
tests component | performance performance
integration tests tests
tests
Cloud X X X
PSI X X X
ITF X X X
HPC system | (X) X




SDP Integration Tests

#Edit (QAdd comment  Assign More v Admin +

¥ Details
Type: & Test Plan Resolution: Unresolved
Priority: o Not Assigned Fix Version/s: None
Affects None
Version/s:
Component/s: COM SDP SW
Labels: None
Telescope(s): MID, LOW

¥ Description
Test plan to support releases of the SDP.

This collects the tests performed in the SDP integration repository.

¥ Tests

GRS Create Test Execution «  Trigger Build Test Plan Board

Overall Execution Status
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NOTE: This ADR is primarily about
obsState state machine.
The states and transitions from intial state
to state=OFF have not been considered in
depth, and may not match current

implementations. Do not take this part as
definitive - if the current implementation “any state=INIT
differs then please consult before e
X state
changing.
Observing State " (e
state=FAULT Reset—» state=OFF
Off
tate=ON g
state= l
[0 reach the READY state s :
obsState=RESTARTING |- Bestalt | ghsstate-EMPTY
. ol Complete

from the EMPTY state, - o

obsState=FAULT

we must pass through i

Restart
fatal error [ T
Assigned/ ReleaseResources
Released AssignResources
b | |
J ) state” =

obsState=IDLE

and CONFIGURING. —

Abort Abort Configure

Abort

obsState=CONFIGURING

Abort Complete——  0bsState=ABORTING

[€«——Abort
ry ry Ready Configure
Abort —
obsState=READY
Note: Abort
Command ObsReset
and related state s SanGoiiin
(RESETTING) can canComplete
will not be implemented in i
AA0.5 and AA1
obsState=SCANNING =~ —




What did we find? The bad bits

® Plenty of technical issues
O testing finite state automata
O details of Tango implementation
O complexity of test setup/teardown
® Social issues:
lack of knowledge of how to specify tests
feeling that tests couldn’t be changed
communications issues with our distributed nature

O O O O

resourcing for integration testing and testware
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What did we find? (the good bits)

We found new bugs

We found gaps in our design

Everyone involved got a better understanding of the system
The nucleus of our DSL
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Conclusions

e BDD testing is a powerful tool
O It can uncover issues in your organisation!
O this will make your system better when fixed!

O The nature of finite state automata means you need to take more
time over testware.

B This will pay off for long-lasting projects.




Any questions?
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