i~ UNIVERSITY OF

g

i CAMBRIDGE 3,

o)

Using BDD testing in SKAO:
Challenges and Opportunities

Presenter: Verity Allan,

University of Cambridge
Co-authors: Giorgio Brajnik, Ray Brederode

email: vla22@cam.ac.uk

Telescope Design

Component & Connector
View of the Observatory

software.

TMC = Telescope
Monitoring & Control

SDP = Science Data
Processor

CSP = Central Signal
Processor

SRC = SKA Regional
Centre

UNIVERSITY OF
» CAMBRIDGE

«systemm»

«sub-system»
: Synchronisatioh—[_
and Timing (SAT)

«Sub-system» gl
: Network Manager |

(NMGR)

«sub-system» {l

: INFRA
U"eclh
ConLro.‘,‘I"

J
«Sub-system» {l
: Telescope

Manager Control

™1

: Telescope Management & Data Handling

<< TANGO bus>>

«sub-system» {l

] : Low Array : Dish

y;ﬁ:;cess' Ef,?:,'en Station Beams TDjsh Data

J

«Sub-system» @

A

— Very Long
«sub-system» Baseline
: Central Signal Interferometry
Processor (CSP)

J
«Sub-system» @ $:|
i «sub-system»
: Science Data : :
Processor (SDP) : VLBI Terminal
1

Global Heeing egional Centre
Operations Data Archive Interface
IOSO —
OST)
AAA | Dynamic I
Deployment
J
Observation «systems External
Planning «system» : SKA Correlator
~ : Platform Regional Centres
SRCs)
External Data (
(e.g. BIPM
UTCIk))
Key
Common @ MID Specific —— Communication O Interface Port
Component Component

2]
@ LOW Specific

Component

== Control Bus
— Main Data Streams

O Provided Interface
™ Required Interface

«0S0O $j = =
component» : Telescope[

: OET Model data

«Sub-system»
Telescope Monitoring and Control { |

: Central Nodeg[- : Resource gl

Manager

J
- Configurationﬂ

Manager

i
J J 1

LJ
: SDP SubArrayE ' : SubArray Nodg|

1 Leaf Node C

—
o

g = 0— =
«SUD-system=»

: SDP : CSP SubArra g]
: CSP Leaf Nod(;::| Leaf Node YE : DISH Leaf Nod

[I}

E «SUD-system» E
«SUD-system» : DISH
: CSP “

SAFe®

e Planning Intervals (Pls) lasting 1 quarter
O containing a Planning week
® Agile teams

58 UNIVERSITY OF
Sl CAMBRIDGE

Goals

test often & quickly _w_m

® b
e help devs find bugs
e stakeholders can validate spec
e |t's economic
—— ‘__’;

Challenges

Many domains

Diverse skill levels

High autonomy

needs multiple teams

specialist hardware, requiring complex integration environments.

under resourcing of integration
W /?\ . 'nz

highly distributed teams
g &

=B UNIVERSITY OF
CAMBRIDGE

¢

Why BDD?

® specification by example
O you know what the system should do
® test steps specified in a simple format
e development of Domain specific language (DSL)
® results in living documation

58 UNIVERSITY OF

SDP scenario

Given I connect to an SDP subarray
And obsState is READY

When I call Scan

Then obsState is SCANNING

And scanID has the expected value

75

ttttttttt

{9 CAMBRIDGE

TMC BDD scenario with examples

Given I connect to an SDP subarray

And obsState is <obs_state>
When I call <command> with an invalid JSON configuration
Then the device raises an API_CommandFailed exception

Examples:
obs_state command
EMPTY AssignResources
IDLE Configure
READY Scan
5 UNIVERSITY OF

SKAOQO Test Environments

e Cloud ¢ >

e PSls (Prototype System Integration environments):
O Canada, Netherlands, Australia

e |TFs (Integrated Test Facilities):
O South Africa & Australia

578 UNIVERSITY OF
¥V CAMBRIDGE

What can we test where?

Environment unit tests signal chain @ software basic large
tests component | performance performance
integration tests tests
tests
Cloud X X X
PSI X X X
ITF X X X
HPC system | (X) X

SDP Integration Tests

#Edit (QAdd comment Assign More v Admin +

¥ Details
Type: & Test Plan Resolution: Unresolved
Priority: o Not Assigned Fix Version/s: None
Affects None
Version/s:
Component/s: COM SDP SW
Labels: None
Telescope(s): MID, LOW

¥ Description
Test plan to support releases of the SDP.

This collects the tests performed in the SDP integration repository.

¥ Tests

GRS Create Test Execution « Trigger Build Test Plan Board

Overall Execution Status

NIVERSITY OF | |
AMBRIDGE O 10

gt yrf}
Al AU

NOTE: This ADR is primarily about
obsState state machine.
The states and transitions from intial state
to state=OFF have not been considered in
depth, and may not match current

implementations. Do not take this part as
definitive - if the current implementation “any state=INIT
differs then please consult before e
X state
changing.
Observing State " (e
state=FAULT Reset—» state=OFF
Off
tate=ON g
state= l
[0 reach the READY state s :
obsState=RESTARTING |- Bestalt | ghsstate-EMPTY
. ol Complete

from the EMPTY state, - o

obsState=FAULT

we must pass through i

Restart
fatal error [T
Assigned/ ReleaseResources
Released AssignResources
b | |
J) state” =

obsState=IDLE

and CONFIGURING. —

Abort Abort Configure

Abort

obsState=CONFIGURING

Abort Complete—— 0bsState=ABORTING

[€«——Abort
ry ry Ready Configure
Abort —
obsState=READY
Note: Abort
Command ObsReset
and related state s SanGoiiin
(RESETTING) can canComplete
will not be implemented in i
AA0.5 and AA1
obsState=SCANNING =~ —

What did we find? The bad bits

® Plenty of technical issues
O testing finite state automata
O details of Tango implementation
O complexity of test setup/teardown
® Social issues:
lack of knowledge of how to specify tests
feeling that tests couldn’t be changed
communications issues with our distributed nature

O O O O

resourcing for integration testing and testware

58 UNIVERSITY OF
Sl CAMBRIDGE

What did we find? (the good bits)

We found new bugs

We found gaps in our design

Everyone involved got a better understanding of the system
The nucleus of our DSL

578 UNIVERSITY OF
¥ CAMBRIDGE

Conclusions

e BDD testing is a powerful tool
O It can uncover issues in your organisation!
O this will make your system better when fixed!

O The nature of finite state automata means you need to take more
time over testware.

B This will pay off for long-lasting projects.

Any questions?

UNIVERSITY OF
&

¥ CAMBRIDGE

