ILALEPG
202

€ COsYLAB

Advancin ing humani ity. Engineering remar kable.

Strategy and Tools to Test Software in the SKA Project:
The CSP.LMC Case

Gianluca Marotta, Elisabetta Giani, Ivana Novak, Martino Colciago, Giorgio
Brajnik and Carlo Baffa

What do we want to achieve?

How to make our software component 100% reliable?

~

Slide 2

What do we want to achieve?

How to make our software component 188%+relabie?

Maybe it's impossible...

Better questions are:

~

Slide 2

What do we want to achieve?

How to make our software component 188%+relabie?

Maybe it's impossible...

Better questions are:

- How to make our software component as reliable
as possible?

N

Slide 2

What do we want to achieve?

How to make our software component 188%+relabie?

Maybe it's impossible...

Better questions are:

- How to make our software component as reliable
as possible?

N

- How to guantify the reliability of our
software component?

Slide 2

Outline

e What are we testing ?

- The SKA telescope
- The CSP-Local Monitoring and Control
- The CSP.LMC and its environment

e How are we testing it?

- Testing SKA Software

- Unit / Component / Integration
- Code structure

- Fault Conditions Analysis

e When and where are we testing it?
- CI/CD pipeline

e Improve and quantify “reliability”

- Data mining on test results

Slide 3

What are we testing?

The SKA telescope

The Sqguare Kilometer Array (SKA) is an international effort to
construct the world’s biggest radio telescope.

~ Mid Telescope
'8l Location: South Africa | ocation: Australia

350 Mhz to 15.3 GHz 50 MHz to 350 GHz
197 dishes - max baseline: 150km() 131000 antennas- max baseline: ~65km(!)

(1) Data for SKA1 implementation Ref: skao.int

D ICALEPCS-cv: ono g3 Slide 4

A I SOUTH AFRICA

What are we testing?

The SKA telescope

SKA will produce a huge amount of data

SKA-MID .
diSheS /12 Tb/s for Mid

~600 Pb/yr (1 ..to SKA
| —) Regional
: Central Science Centers
SKA-LOW 8.8 Tb/s for Low 0 g, Datq (SRC)
antennas Processor Processor
(CSP) (SDP)

- The purpose of CSP is to correlate, filter and make a preliminary analysis
- SDP makes further data reduction

- SRC stores data and made them available for scientific analysis

(1) Data for SKA1 implementation Ref: skao.int

0 ICALEPES 07t nop23 Shide s

A SOUTH AFRICA

What are we testing?

The SKA telescope

SKA will produce a huge amount of data

SKA-MID - h
diSheS /12 Tb/s for Mid

~600 Pb/yr (1 ..to SKA
—) Regional
: Central Science Centers
SKA-LOW 8.8 Tb/s for Low @ 50| Datq (SRC)
antennas Processor Processor
(CSP) (SDP)

O

... let's zoom in!
- The purpose of CSP is to correlate, filter and make a preliminary analysis
- SDP makes further data reduction

- SRC stores data and made them available for scientific analysis

(1) Data for SKA1 implementation Ref: skao.int

0 ICALEPES 07t nop23 Shide s

A SOUTH AFRICA

What are we testing?

The CSP.Local Monitoring and Control

Telescope Monitoring and Control (TMC)

A) A CSP is composed of 4 main
— subsystems:
Local Monitoring and Control
(CSPLMC) .
4 I - 3 for data reduction (CBF,
' I I l PSS, PST);
orrelator . - 1 for monitoring/control
C BOQT:?: »Secljruclr?(()PrSS)) g - (CSP.LMC) I
%‘ Former \/ Bmy ... to
(CBF) PulSar (0| SRCs
imin - . .
™ Timing (PS5 SDP CSP.LMC provides the interface to
Central Signal Processor (CSP) TMC without exposing CSP

internal complexity.

‘ data flow t monitor/control

Slide 6

What are we testing?

The CSP.Local Monitoring and Control

Telescope Monitoring and Control (TMC)

A) A CSP is composed of 4 main
— subsystems:
Local Monitoring and Control
_
I - 3 for data reduction (CBF,
' PSS, PST);
. - 1 for monitoring/control
Correlator SO o
Boer;?n »Segrclr?(&\)\ o 111 - (CSPLMC)
Former Byl ... to
(CBF) N ~PulSar B | SRCs
Himing {755 SDP CSP.LMC provides the interface to

TMC without exposing CSP
internal complexity.

Central Signal Processor (CSP)

‘ data flow t monitor/control

This is our System Under Test! O let’s zoom in! (again)

Slide 6

What are we testing?

The CSP.LMC and its environment

A very simplified view of the internal structure...

Subarray 1 - A software component is a TANGO
Controller Device written in Python. o B
SubqrroyZ
/‘CSRLMC - Each TANGO Device is containerized and
/ / / orchestrated with Kubernetes (k8S)
/ Subarray 1
Controller
Subarray 2
.../ f .. similar for
Processor 1 the other
Processor2
t subsystems
‘55—
111 CBF

mm) data flow

t monitor/control

{CALEPCS-tt12023 S'de 7

I SOUTH AFRICA

What are we testing?

The CSP.LMC and its environment

A very simplified view of the internal structure...

A

Controller

Subarray 1

Subarray 2

CSPLMC

- A software component is a TANGO
Device written in Python.

C

/

/

/

Controller S/

Processor 2

Subarray 1/

—l.

‘; Condl -

Subarray 2 Kubernetes Pod
f .. sSimilar for Tango Device Server 7~4N _.
Processor 1 the other G
t subsystems Python package 33
11t
" I Software Component (e.g. CSPLMC Subarray 2)

CBF

orchestrated with Kubernetes (k8S)

O let’'s zoom in! (last time)

\— Fach TANGO Device is containerized and

Bugs and failures can happen anywhere!

mm) data flow

t monitor/control

{CALEPCS-tt12023 S'de 7

I SOUTH AFRICA

How are we testing it?

Testing SKA Software

The Software Engineering Group at SKAO is made by more than o
100 developers organized into different Agile Teams %gﬂﬁg

- Individual teams are responsible for a specific software subsystem, for its
quality and its testing strategy

- Verification Tests based on requirements are done by AIV(Y) teams

- A Testing Community of Practice gather developers from different teams
to share knowledge and practices

Tests are essential to demonstrate and
validate functionalities in the framework
of Continuous Integration. S

(1) Assembly, Integration and Verification

. :

How are we testing it?

Unit Tests

- "The testing of individual software units [...] that can be tested in
isolation.”(1)

Client Component

\

Kubernetes Pod

Tango Device Server

Python package

Component Under Test

v

Server Component

- Python object

(1) From SKAO “Software Testing Policy and Strategy”:

0 ICALEPES 0723 Shide 9

SOUTH AFRICA

How are we testing it?

Unit Tests

- "The testing of individual software units [...] that can be tested in
isolation.”(1)

A “software unit” is a Python object:

Client Component

\
- Test client is a python software

Kubernetes Pod
/)ﬂ Device Server (thESt)
/ PYthOF\ pockoge QWG
\gtest Elg 1 |

Component Under Test

v

- Python object Server Component

(1) From SKAO “Software Testing Policy and Strategy”:

0 {CALEPCS:Cm9g2g3 Stide o

SOUTH AFRICA

Unit Tests

How are we testing it?

- "The testing of individual software units [...] that can be tested in

isolation.”(1)

Client Component

\

Kubernetes Pod
/)ﬂ Device Server

Component Under Test

- Python object

v

Server Component

A “software unit” is a Python object:

- Test client is a python software
(pytest)

- The isolation is obtained by
using python mocks

(1) From SKAO “Software Testing Policy and Strategy”:

ICALEPES 0723 Shide 9

SOUTH AFRICA

Unit Tests

How are we testing it?

- "The testing of individual software units [...] that can be tested in

isolation.”(1)

Client Component

\

Kubernetes Pod
/)ﬂ Device Server
/ PYthOF\ pockoge QWG
Pytest
k Mock P

Component Under Test

- Python object

v

Server Component

A “software unit” is a Python object:

- Test client is a python software
(pytest)

- The isolation is obtained by
using python mocks

- written with a Test Driven
Development (TDD) approach

(1) From SKAO “Software Testing Policy and Strategy”:

ICALEPES 0723 Shide 9

SOUTH AFRICA

How are we testing it?
Component Tests J

- “Component testing aims at exposing defects of a particular component”1)

Client Component

N\

Kubernetes Pod

Tango Device Server

Python package

Component Under Test

v

| Python object Other Component

(1) From SKAO “Software Testing Policy and Strategy”:

0 ICALEPES o023 Siide 10

SOUTH AFRICA

How are we testing it?
Component Tests J

- “Component testing aims at exposing defects of a particular component”1)

o The “component” is the Tango Device

, ent
Python test client /
L N

R Kubernetes Pod Python-Component Tests

Python package

Tango Device Se

)

- Other components are
substituted with python Mock

- Test client is pytest

Component Under Test

v/
y

: Oor'—~ Nt
- Python object Python Mock

(1) From SKAO “Software Testing Policy and Strategy”:

0 ICALEPES o023 Siide 10

SOUTH AFRICA

How are we testing it?
Component Tests

- “Component testing aims at exposing defects of a particular component”(1)

The "component” is the kubernetes (k8s) pod

Tongo Client Bbnent /

b k8s-Component Tests

Kubernetes Pod
Tango Device Server e Server components are simulators

Python package z”Vc;{ (custom Tango devices in k8s)

e Test client is a tango client
running on a kubernetes pod.

Component Under Test

< e Test client can also inject
Q%r Serve S e Simulator’s behavior (e.g. fault
conditions)

(1) From SKAO “Software Testing Policy and Strategy”:

ICALEPES o3 Shide 11

SOUTH AFRICA

] How are we testing it?
Integration Tests

- "Testing performed to expose defects in the interfaces and in the interaction
between components [...](0"

Tango Client
o

ponent

- "Integration testing may also
include hardware-software
tests(1)

Tango Device Server

QWQ

Python package

Component Under Test

v

Server Component

(1) https://developer.skao.int/en/latest/policies/ska-testing-policy-and-strategy.html

ICALEPES 070023 Siide 12

SOUTH AFRICA

How are we testing it?
Fault Conditions Analysis

Fault Conditions tested in CSP.LMC:

Category? I Il Il vV V Vi
Networking TangoDB Lost connection Lost connection Event Disconnection Connection
connection with a still running with a stopped subscription during a timeouts™
device device command
execution
Configuration Invalid Unavailable Unresponsive
configuration resources” subsystems”
Command Wrong inputs Command not LMC device Subsystem Slow execution®
execution allowed failure* device failure”
Monitoring Device failures Conflicting events Race conditions
Infrastructure Failing/restarti Tango DB Tango DB
ng pods configuration unavailability
errors

*errors that can be tested only with component tests
(DFrom CSP.LMC Fault Condition analysis

'CALEPG \UAPETUWN2023 Slide 13

SOUTH AFRICA

How are we testing it?
Testing Infrastructure

Component/Integration tests can be triggered by the same Gherkin syntax

[Test Entry Point) . T —
@oython component @k8s component @lntegration

AA >cenario: Turn on CSP
e A V* --------------- . Given CSP Controller setup as off
I [Mocked Connection [tango.DeviceProxy J Connection \nd all CSF Subarrays are setup @s off .
| layer | When CSP Controller's OnCommand 1s triggered with default

—————————————————————————————— ¢-——“—‘*““““““““’l I'hen CSP Controller 1s on
Y And all CSP Subarrays are on

l Fake Device] [simulated Subsystems [real Subsystems

\ run into /

python-component -<—» k8s-component -<—> integration

- Decorators select the context
where to run the test

| ' Python Package | ' k8s Pod

Running the same test on different context (python/k8s/integration) helps to
find the root of the failure

0 ICALEPES 07t nog3 Shide 14

SOUTH AFRICA

When and where are we testing it?

CI/CD pipeline

Tests are performed by a Continuous Integration & Delivery and/or
Deployment (CI/CD) Pipeline(%):

LINT BUILD TEST PAGES PUBLISH SCAN .POST
helm-chart helm-chart python-test docs-pages helm-chart* oci-image-scan create-metrics
oci-image oci-image real-k8s-test oci-image*
python python sim-k8s-test* python G @
¥ GitLab

e at every change of the code (automated regression tests);
e ON demand;
e With scheduled periodic jobs

Integration tests can be triggered on different facilities, with and without
hardware.

(1)M.Di Carlo et al. "CI-CD Practices at SKA” Proc SPIE 12189 (2022)

K\V CALEPCS o g3 Slide 15

SOUTH AFRICA

Improve and quantify “reliability”

Data mining on test results
Collecting information on test execution, will give us the possibility :

e to explore correlation between failures;
e to quantify the rate of success of a specific functionality.

Test name Result Version Date and Time Test Type Exec. time Facility Hardware Cause of
(ms) failure (log)

Turn On PASSED 0.16.2 29/09/2023 python-compone 300 STFC // //

CSP 19:22 nt

Turn On FAILED 0.16.2 29/09/2023 k8s-component 10000 STFC // See

CSP 19:22 attachment

Turn On FAILED 0.16.2 29/09/2023 integration 10000 STFC NO See

CSP 19:22 attachment

Turn On PASSED 0.16.2 29/09/2023 integration 20 PSI NO //

CSP 21:00

Turn On PASSED 0.16.2 29/09/2023 integration 450 PSI YES //

CSP 21:03

Category

Happy paths

Happy paths

Happy paths

Happy paths

Happy paths

{CALEPCS-tt 12023 >'de 16

Conclusions

e a multi-level approach (unit/component/integration) is employed to
evaluate our software within distinct contexts

o testing infrastructure has been consolidated to eliminate redundancy
with shared testing scripts

e A systematic approach has been devised for to the categorization
and testing of fault conditions

e data mining techniques can be used to collect and analyze the
results.

Slide 17

For further informations: gianluca.marotta@inaf.it

Thank you for your attention! NOT SURE I THEY'RE CLAPPING FOR MY

PRESENTATION

IDS o

Design Coaching for Excellence

